0.00002和0.30相差1.5W倍,这肯定是不行的,太不稳定。看看是不是忘记对数据进行归一化?没归一化的话,会导致数量级大的输入的权值占主导地位,弱化其他输入向量维的作用。
如果不是归一化的原因,看看是不是网络结构有问题,例如改变隐层节点数、改变输入向量结构,或者干脆换种神经网络。
谷歌人工智能写作项目:神经网络伪原创

预测数据的话BP不是特别好用,最好用Elman反馈神经网络或者RNN循环神经网络,这些有记忆功能的网络比较好用A8U神经网络。bp主要和你选择的隐含层数,和误差范围,学习率有关。
你可以调节相关参数来改变神经网络,获得更精确的结果。
bp神经网络是有一定缺陷的,比如容易陷入局部极小值,还有训练的结果依赖初始随机权值,这就好比你下一个山坡,如果最开始的方向走错了,