任务描述:当前有一份excel表格数据,里面存在缺失值,需要对缺失的数据到es数据库中进行查找并对其进行把缺失的数据进行补全。excel表格数据如下所示:

- # 创建physical_examination索引
- PUT /physical_examination
- {
- "settings": {
- "index": {
- "number_of_shards": "1",
- "number_of_replicas": "1"
- }
- },
- "mappings": {
- "properties": {
- "nums": {
- "type": "integer"
- },
- "name": {
- "type": "text"
- },
- "sex": {
- "type": "text"
- },
- "phone": {
- "type": "integer"
- },
- "result": {
- "type": "text"
- }
- }
- }
- }

【注意:json数据不能格式化换行,否则报错】
- # 向physical_examination索引中添加数据
- POST physical_examination/_bulk
- {"index":{"_id":"1"}}
- {"nums":1,"name":"刘一","sex":"男","phone":1234567891,"result":"优秀"}
- {"index":{"_id":"2"}}
- {"nums":2,"name":"陈二","sex":"男","phone":1234567892,"result":"优秀"}
- {"index":{"_id":"3"}}
- {"nums":3,"name":"张三","sex":"男","phone":1234567893,"result":"优秀"}
- {"index":{"_id":"4"}}
- {"nums":4,"name":"李四","sex":"男","phone":1234567894,"result":"优秀"}
- {"index":{"_id":"5"}}
- {"nums":5,"name":"王五","sex":"男","phone":1234567895,"result":"优秀"}



【注意:默认查询索引下的所有数据】
- # 查询索引中的所有数据
- GET physical_examination/_search
- {
- "query": {
- "match_all": {}
- }
- }


方法一:直接在kibana或postman查询的结果中进行复制粘贴到一个文档。
方法二:使用kibana导出数据。
方法三:使用postman导出数据保存到本地。

使用python处理数据,获取需要的数据。
示例代码:
- # 读取json中体检信息
- with open('./data/physical_examination.json', 'r', encoding='utf-8') as f:
- data_json = f.read()
- print(data_json)
-
- # 处理json数据中的异常数据
- if 'false' in data_json:
- data_json = data_json.replace('false', "False")
-
- data_json = eval(data_json)
- print(data_json)
-
- print(data_json['hits']['hits'])
- print('*' * 100)
-
- valid_data = data_json['hits']['hits']
- need_data = []
- for data in valid_data:
- print(data['_source'])
- need_data.append(data['_source'])
- print(need_data)
读取缺失数据的excel表格,把缺失的数据填补进去。
- # 读取需要填补数据的表格
- data_xlsx = pd.read_excel('./data/体检表.xlsx', sheet_name='Sheet1')
- # print(data_xlsx)
-
- # 获取excel表格的行列
- row, col = data_xlsx.shape
- print(row, col)
-
- # 修改表格中的数据
- for i in range(row):
- bb = data_xlsx.iloc[i]
- print(bb['姓名'], bb['手机号'])
- if pd.isnull(bb['手机号']):
- bb['手机号'] = '666'
- for cc in need_data:
- if cc['name'] == bb['姓名']:
- bb['手机号'] = cc['phone']
- data_xlsx.iloc[i, 3] = bb['手机号']
- print(bb['姓名'], bb['手机号'])
- print("-" * 100)
- print(data_xlsx)
将最终处理好的数据保存在新建的文件中。
- # 保存数据到新文件中
- data_xlsx.to_excel('./data/new_data.xlsx', sheet_name='Sheet1', index=False, header=True)
完整代码如下:
- import pandas as pd
-
- # 读取json中体检信息
- with open('./data/physical_examination.json', 'r', encoding='utf-8') as f:
- data_json = f.read()
- print(data_json)
-
- # 处理json数据中的异常数据
- if 'false' in data_json:
- data_json = data_json.replace('false', "False")
-
- data_json = eval(data_json)
- print(data_json)
-
- print(data_json['hits']['hits'])
- print('*' * 100)
-
- valid_data = data_json['hits']['hits']
- need_data = []
- for data in valid_data:
- print(data['_source'])
- need_data.append(data['_source'])
- print(need_data)
-
- # 读取需要填补数据的表格
- data_xlsx = pd.read_excel('./data/体检表.xlsx', sheet_name='Sheet1')
- # print(data_xlsx)
-
- # 获取excel表格的行列
- row, col = data_xlsx.shape
- print(row, col)
-
- # 修改表格中的数据
- for i in range(row):
- bb = data_xlsx.iloc[i]
- print(bb['姓名'], bb['手机号'])
- if pd.isnull(bb['手机号']):
- bb['手机号'] = '666'
- for cc in need_data:
- if cc['name'] == bb['姓名']:
- bb['手机号'] = cc['phone']
- data_xlsx.iloc[i, 3] = bb['手机号']
- print(bb['姓名'], bb['手机号'])
- print("-" * 100)
- print(data_xlsx)
-
- # 保存数据到新文件中
- data_xlsx.to_excel('./data/new_data.xlsx', sheet_name='Sheet1', index=False, header=True)
运行效果,最终处理好的数据如下所示:
