2f-11-2gs i n 2 x = sin^2x= sin2x=
c o s 2 x = cos^2x= cos2x=
2 s i n 2 x 2 = 2sin^2\frac{x}{2}= 2sin22x=
2 c o s 2 x 2 = 2cos^2{\frac{x}{2}}= 2cos22x=
1 − c o s x = 1-cosx= 1−cosx=
s i n x c o s x = sinxcosx= sinxcosx=
s i n x 2 c o s x 2 = sin\frac{x}{2}cos\frac{x}{2}= sin2xcos2x=
math_高数公式每日一过_part2(private)_xuchaoxin1375的博客-CSDN博客
∫ k d x = k x + C \int kdx=kx+C ∫kdx=kx+C
∫ d x = ∫ 1 d x = x + C \int dx=\int 1dx=x+C ∫dx=∫1dx=x+C
∫ 0 d x = C \int 0dx=C ∫0dx=C
f 1 x d x = l n ∣ x ∣ + C f \frac{1}{x}dx=ln|x|+C fx1dx=ln∣x∣+C
∫ s i n x d x = − c o s x + C \int sinxdx=-cosx+C ∫sinxdx=−cosx+C
∫ c o s x d x = s i n x + C \int cosxdx=sinx+C ∫cosxdx=sinx+C
∫ x a d x = 1 a + 1 x a + 1 \int x^a dx=\frac{1}{a+1}x^{a+1} ∫xadx=a+11xa+1
∫ a x = a x ln a + C ( a > 0 ; a ≠ 1 ) \int a^x=\frac{a^x}{\ln a}+C(a>0;a\ne1) ∫ax=lnaax+C(a>0;a=1)
∫ e x d x = e x + C \int e^xdx=e^x+C ∫exdx=ex+C
∫ 1 c o s 2 x d x = ∫ s e c 2 x d x = t a n x + C \int \frac{1}{cos^2x}dx=\int sec^2xdx=tanx+C ∫cos2x1dx=∫sec2xdx=tanx+C
∫ 1 s i n 2 = ∫ c s c 2 x d x = − c o t x + C \int \frac{1}{sin^2}=\int csc^2xdx=-cotx+C ∫sin21=∫csc2xdx=−cotx+C
∫ s e c x t a n x d x = s e c x + C \int secxtanxdx=secx+C ∫secxtanxdx=secx+C
∫ c s c x c o t x d x = − c s c x + C \int cscxcotxdx=-cscx+C ∫cscxcotxdx=−cscx+C
∫ 1 1 − x 2 d x = a r c s i n x + C \int \frac{1}{\sqrt{1-x^2}}dx=arcsinx+C ∫1−x21dx=arcsinx+C
∫ 1 1 + x 2 d x = a r c t a n x + C \int \frac{1}{1+x^2}dx=arctanx+C ∫1+x21dx=arctanx+C
∫ t a n x d x = ∫ s i n x c o s x d x = ∫ d ( − c o s x ) s i n x = − ln ∣ c o s x ∣ + C \int tanxdx=\int \frac{sinx}{cosx}dx=\int \frac{d(-cosx)}{sinx}=-\ln|cosx|+C ∫tanxdx=∫cosxsinxdx=∫sinxd(−cosx)=−ln∣cosx∣+C
∫ c o t x d x = ln ∣ s i n x ∣ + C \int cotxdx=\ln |sinx|+C ∫cotxdx=ln∣sinx∣+C
∫ c s c x d x = ln ∣ c s c x − c o t x ∣ + C \int cscxdx=\ln |cscx-cotx|+C ∫cscxdx=ln∣cscx−cotx∣+C
∫ s e c x d x = ln ∣ s e c x + t a n x ∣ + C \int secxdx=\ln|secx+tanx|+C ∫secxdx=ln∣secx+tanx∣+C
∫ 1 a 2 + x 2 d x = 1 a a r c t a n x a + C \int \frac{1}{a^2+x^2}dx=\frac{1}{a}arctan{\frac{x}{a}}+C ∫a2+x21dx=a1arctanax+C
∫ 1 x 2 − a 2 d x = 1 2 a ln ∣ x − a x + a ∣ + C \int \frac{1}{x^2-a^2}dx=\frac{1}{2a}\ln|\frac{x-a}{x+a}|+C ∫x2−a21dx=2a1ln∣x+ax−a∣+C
∫ 1 a 2 − x 2 d x = a r c s i n ( x a ) + C \int \frac{1}{\sqrt{a^2-x^2}}dx=arcsin(\frac{x}{a})+C ∫a2−x21dx=arcsin(ax)+C
∫ 1 x 2 ± a 2 d x = ln ∣ x + x 2 ± a 2 ∣ + C \int \frac{1}{\sqrt{x^2\pm a^2}}dx=\ln|x+\sqrt{x^2\pm a^2}|+C ∫x2±a21dx=ln∣x+x2±a2∣+C
∫ a 2 − x 2 d x = a 2 2 a r c s i n x a + 1 2 a 2 − x 2 + C = 1 2 ( a 2 a r c s i n x a + a 2 − x 2 ) + C \int \sqrt{a^2-x^2}dx=\frac{a^2}{2}arcsin{\frac{x}{a}}+\frac{1}{2}\sqrt{a^2-x^2}+C=\frac{1}{2}(a^2arcsin{\frac{x}{a}}+\sqrt{a^2-x^2})+C ∫a2−x2dx=2a2arcsinax+21a2−x2+C=21(a2arcsinax+a2−x2)+C
p = a 2 − x 2 p=\sqrt{a^2-x^2} p=a2−x2
∫ p d x = 1 2 a 2 ∫ 1 p d x + 1 2 p + C = 1 2 ( a 2 ∫ 1 p d x + p ) + C \int pdx=\frac{1}{2}a^2\int \frac{1}{p}dx+\frac{1}{2}p+C=\frac{1}{2}(a^2\int \frac{1}{p}dx+p)+C ∫pdx=21a2∫p1dx+21p+C=21(a2∫p1dx+p)+C
分部积分推导法
S = ∫ x 2 − a 2 d x = x x 2 − a 2 − ∫ x d x 2 − a 2 为例方便说明推导和简洁性 , 提前给出如下标记 ( 表达式记号 ) A = x x 2 − a 2 B = ∫ x d x 2 − a 2 Q = a 2 ∫ 1 x 2 − a 2 d x = a 2 ln ∣ x + x 2 − a 2 ∣ \\ S=∫√x2−a2dx=x√x2−a2−∫xd√x2−a2 \\为例方便说明推导和简洁性,提前给出如下标记(表达式记号) \\ A=x√x2−a2B=∫xd√x2−a2Q=a2∫1√x2−a2dx=a2ln|x+√x2−a2| S=∫x2−a2dx=xx2−a2−∫xdx2−a2为例方便说明推导和简洁性,提前给出如下标记(表达式记号)ABQ=xx2−a2=∫xdx2−a2=a2∫x2−a21dx=a2ln∣x+x2−a2∣
B = ∫ x d x 2 − a 2 = ∫ x 2 x 2 − a 2 d x = 分子 + 0 = − a 2 + a 2 ∫ x 2 − a 2 + a 2 x 2 − a 2 d x = ∫ x 2 − a 2 d x + a 2 ∫ 1 x 2 − a 2 d x = S + Q B=∫xd√x2−a2=∫x2√x2−a2dx\xlongequal分子+0=−a2+a2∫x2−a2+a2√x2−a2dx=∫√x2−a2dx+a2∫1√x2−a2dx=S+Q B=∫xdx2−a2=∫x2−a2x2dx分子+0=−a2+a2∫x2−a2x2−a2+a2dx=∫x2−a2dx+a2∫x2−a21dx=S+Q
S = A − B = A − S − Q 2 S = A − Q → S = 1 2 ( A − Q ) S = 1 2 ( x x 2 − a 2 − a 2 ln ∣ x + x 2 − a 2 ∣ ) \\S=A-B=A-S-Q \\2S=A-Q \to S=\frac{1}{2}(A-Q) \\S=\frac{1}{2}(x\sqrt{x^2-a^2}-a^2\ln |x+\sqrt{x^2-a^2}|) S=A−B=A−S−Q2S=A−Q→S=21(A−Q)S=21(xx2−a2−a2ln∣x+x2−a2∣)
∫ a 2 + x 2 d x = 1 2 ( x a 2 + x 2 + a 2 ln ∣ a 2 + x 2 + x ∣ ) + C \int \sqrt{a^2+x^2}dx=\frac{1}{2}(x\sqrt{a^2+x^2}+a^2 \ln|\sqrt{a^2+x^2}+x|) +C ∫a2+x2dx=21(xa2+x2+a2ln∣a2+x2+x∣)+C