skiplist本质上也是一种查找结构,用于解决算法中的查找问题,跟平衡搜索树和哈希表的价值是一样的,可以作为key或者key/value的查找模型。
skiplist是由William Pugh发明的,最早出现于他在1990年发表的论文《Skip Lists: AProbabilistic Alternative to Balanced Trees》。
skiplist,顾名思义,首先它是一个list。实际上,它是在有序链表的基础上发展起来的。如果是一个有序的链表,查找数据的时间复杂度是O(N)。
William Pugh优化思路:

上面我们说到,skiplist插入一个节点时随机出一个层数,那么如何保证搜索时的效率呢?
这里首先要细节分析的是这个随机层数是怎么来的。一般跳表会设计一个最大层数maxLevel的限
制,其次会设置一个多增加一层的概率p。那么计算这个随机层数的伪代码如下图:

在Redis的skiplist实现中,这两个参数的取值为:
p = 1/4
maxLevel = 32
根据前面randomLevel()的伪码,我们很容易看出,产生越高的节点层数,概率越低。
跳表的平均时间复杂度为O(logN),计算过程参考这篇博客Redis内部数据结构详解(6)——skiplist
#include
#include
#include
#include
#include
using namespace std;
struct SkiplistNode
{
int _val;
vector<SkiplistNode*> _nextV;
SkiplistNode(int val, int level)
:_val(val)
, _nextV(level, nullptr)
{}
};
class Skiplist {
typedef SkiplistNode Node;
public:
Skiplist() {
srand(time(0));
// 头节点,层数是1
_head = new SkiplistNode(-1, 1);
}
bool search(int target) {
Node* cur = _head;
int level = _head->_nextV.size() - 1;
while (level >= 0)
{
// 目标值比下一个节点值要大,向右走
// 下一个节点是空(尾),目标值比下一个节点值要小,向下走
if (cur->_nextV[level] && cur->_nextV[level]->_val < target)
{
// 向右走
cur = cur->_nextV[level];
}
else if (cur->_nextV[level] == nullptr || cur->_nextV[level]->_val > target)
{
// 向下走
--level;
}
else
{
return true;
}
}
return false;
}
vector<Node*> FindPrevNode(int num)
{
Node* cur = _head;
int level = _head->_nextV.size() - 1;
// 插入位置每一层前一个节点指针
vector<Node*> prevV(level + 1, _head);
while (level >= 0)
{
// 目标值比下一个节点值要大,向右走
// 下一个节点是空(尾),目标值比下一个节点值要小,向下走
if (cur->_nextV[level] && cur->_nextV[level]->_val < num)
{
// 向右走
cur = cur->_nextV[level];
}
else if (cur->_nextV[level] == nullptr
|| cur->_nextV[level]->_val >= num)
{
// 更新level层前一个
prevV[level] = cur;
// 向下走
--level;
}
}
return prevV;
}
void add(int num) {
vector<Node*> prevV = FindPrevNode(num);
int n = RandomLevel();
Node* newnode = new Node(num, n);
// 如果n超过当前最大的层数,那就升高一下_head的层数
if (n > _head->_nextV.size())
{
_head->_nextV.resize(n, nullptr);
prevV.resize(n, _head);
}
// 链接前后节点
for (size_t i = 0; i < n; ++i)
{
newnode->_nextV[i] = prevV[i]->_nextV[i];
prevV[i]->_nextV[i] = newnode;
}
}
bool erase(int num) {
vector<Node*> prevV = FindPrevNode(num);
// 第一层下一个不是val,val不在表中
if (prevV[0]->_nextV[0] == nullptr || prevV[0]->_nextV[0]->_val != num)
{
return false;
}
else
{
Node* del = prevV[0]->_nextV[0];
// del节点每一层的前后指针链接起来
for (size_t i = 0; i < del->_nextV.size(); i++)
{
prevV[i]->_nextV[i] = del->_nextV[i];
}
delete del;
// 如果删除最高层节点,把头节点的层数也降一下
int i = _head->_nextV.size() - 1;
while (i >= 0)
{
if (_head->_nextV[i] == nullptr)
--i;
else
break;
}
_head->_nextV.resize(i + 1);
return true;
}
}
int RandomLevel()
{
size_t level = 1;
// rand() ->[0, RAND_MAX]之间
while (rand() <= RAND_MAX*_p && level < _maxLevel)
{
++level;
}
return level;
}
//int RandomLevel()
//{
// static std::default_random_engine generator(std::chrono::system_clock::now().time_since_epoch().count());
// static std::uniform_real_distribution distribution(0.0, 1.0);
// size_t level = 1;
// while (distribution(generator) <= _p && level < _maxLevel)
// {
// ++level;
// }
// return level;
//}
void Print()
{
Node* cur = _head;
while (cur)
{
printf("%2d\n", cur->_val);
// 打印每个每个cur节点
for (auto e : cur->_nextV)
{
printf("%2s", "↓");
}
printf("\n");
cur = cur->_nextV[0];
}
}
private:
Node* _head;
size_t _maxLevel = 32;
double _p = 0.5;
};
skiplist相比平衡搜索树(AVL树和红黑树)对比,都可以做到遍历数据有序,时间复杂度也差
不多。
skiplist的优势是:
skiplist相比哈希表而言,就没有那么大的优势了。
相比而言
skiplist优势如下: