• 神经网络 深度神经网络,深度神经网络进展情况


    深度神经网络目前有哪些成功的应用

    深度学习最成功的应用是在音视频的识别上,几乎所有的商用语音识别都是深度学习来完成的。其次深度学习应用最成功的领域就是图像识别,目前识别准确率已经超越人类。

    深度学习成了图像识别的标配,以至于目前做图像不懂深度学习都不好意思跟人打招呼。(这种状态个人觉得是不好的)其中图像识别中,应用最广的是人脸识别。

    自然语言理解方面,深度学习也非常活跃,主要是使用一种叫做LSTM的深度学习方法。

    深度学习已经深入各个领域无人车,智能回答,智能翻译,天气预报,股票预测,人脸比对,声纹比对,等其他许多有趣的应用,比如智能插画,自动作诗,自动写作文,等都可以通过深度学习来完成深度神经网络目前有哪些成功的应用。

    谷歌人工智能写作项目:神经网络伪原创

    深度学习发展前景如何啊?

    深度学习的职业发展方向有哪些?

    当前,人工智能发展借助深度学习技术突破得到了全面关注和助力推动,各国政府高度重视、资本热潮仍在加码,各界对其成为发展热点也达成了共识。

    本文旨在分析深度学习技术现状,研判深度学习发展趋势,并针对我国的技术水平提出发展建议。一、深度学习技术现状深度学习是本轮人工智能爆发的关键技术。

    人工智能技术在计算机视觉和自然语言处理等领域取得的突破性进展,使得人工智能迎来新一轮爆发式发展。而深度学习是实现这些突破性进展的关键技术。

    其中,基于深度卷积网络的图像分类技术已超过人眼的准确率,基于深度神经网络的语音识别技术已达到95%的准确率,基于深度神经网络的机器翻译技术已接近人类的平均翻译水平。

    准确率的大幅提升使得计算机视觉和自然语言处理进入产业化阶段,带来新产业的兴起。深度学习是大数据时代的算法利器,成为近几年的研究热点。和传统的机器学习算法相比,深度学习技术有着两方面的优势。

    一是深度学习技术可随着数据规模的增加不断提升其性能,而传统机器学习算法难以利用海量数据持续提升其性能。

    二是深度学习技术可以从数据中直接提取特征,削减了对每一个问题设计特征提取器的工作,而传统机器学习算法需要人工提取特征。

    因此,深度学习成为大数据时代的热点技术,学术界和产业界都对深度学习展开了大量的研究和实践工作。深度学习各类模型全面赋能基础应用。卷积神经网络和循环神经网

  • 相关阅读:
    机器视觉工程师前景如何,计算机视觉工程师前景
    Threejs_08 纹理颜色的调整(颜色空间的设置)
    【Python】Python 利用模块实现单例模式
    springcloud使用openFeign
    java中集合的List
    TiSpark 原理之下推丨TiDB 工具分享
    复原 IP 地址(回溯+剪枝)
    <b><strong>,<i><em>标签的区别
    C语言中获得结构体成员的相对偏移量(Linux内核源码解读)
    RationalDMIS2022校验测头
  • 原文地址:https://blog.csdn.net/super67269/article/details/126527757