• YOLOv7训练自己的VOC数据集


    YOLOv7源码:https://github.com/WongKinYiu/yolov7

    本文是对YOLOV7训练自己的yolo数据集的扩展,具体训练等步骤不再详细赘述,遇到看不懂的请移步YOLOV7训练自己的yolo数据集


    一、配置YOLOv7环境

    参考YOLOV7训练自己的yolo数据集

    二、使用自己的数据集进行训练

    VOC数据集格式

    正常的VOC格式
    在这里插入图片描述

    VOC数据集转换为yolo格式

    可以参考我这篇博客的内容:将VOC数据集转换为yolo格式,也可以直接复制下面的代码(更方便)。

    import xml.etree.ElementTree as ET
    import pickle
    import os
    from os import listdir, getcwd
    from os.path import join
    import random
    from shutil import copyfile
    
    # 填入自己voc数据集类别
    classes = ["side_head","back_head"]
    
    # 训练集和验证集的比例
    TRAIN_RATIO = 0.5
    
    
    def clear_hidden_files(path):
        dir_list = os.listdir(path)
        for i in dir_list:
            abspath = os.path.join(os.path.abspath(path), i)
            if os.path.isfile(abspath):
                if i.startswith("._"):
                    os.remove(abspath)
            else:
                clear_hidden_files(abspath)
    
    
    def convert(size, box):
        dw = 1. / size[0]
        dh = 1. / size[1]
        x = (box[0] + box[1]) / 2.0
        y = (box[2] + box[3]) / 2.0
        w = box[1] - box[0]
        h = box[3] - box[2]
        x = x * dw
        w = w * dw
        y = y * dh
        h = h * dh
        return (x, y, w, h)
    
    
    def convert_annotation(image_id):
        in_file = open('/home/wu_datasets/yolov7-main/VOCdevkit/VOC2012/Annotations/%s.xml' % image_id)
        out_file = open('/home/wu_datasets/yolov7-main/VOCdevkit/VOC2012/YOLOLabels/%s.txt' % image_id, 'w')
        tree = ET.parse(in_file)
        root = tree.getroot()
        size = root.find('size')
        w = int(size.find('width').text)
        h = int(size.find('height').text)
    
        for obj in root.iter('object'):
            # difficult = obj.find('difficult').text
            cls = obj.find('name').text
            if cls not in classes:
                continue
            cls_id = classes.index(cls)
            xmlbox = obj.find('bndbox')
            b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
                 float(xmlbox.find('ymax').text))
            bb = convert((w, h), b)
            out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
        in_file.close()
        out_file.close()
    
    
    wd = os.getcwd()
    wd = os.getcwd()
    data_base_dir = os.path.join(wd, "VOCdevkit/")
    if not os.path.isdir(data_base_dir):
        os.mkdir(data_base_dir)
    work_sapce_dir = os.path.join(data_base_dir, "VOC2012/")
    if not os.path.isdir(work_sapce_dir):
        os.mkdir(work_sapce_dir)
    annotation_dir = os.path.join(work_sapce_dir, "Annotations/")
    if not os.path.isdir(annotation_dir):
        os.mkdir(annotation_dir)
    clear_hidden_files(annotation_dir)
    image_dir = os.path.join(work_sapce_dir, "JPEGImages/")
    if not os.path.isdir(image_dir):
        os.mkdir(image_dir)
    clear_hidden_files(image_dir)
    yolo_labels_dir = os.path.join(work_sapce_dir, "YOLOLabels/")
    if not os.path.isdir(yolo_labels_dir):
        os.mkdir(yolo_labels_dir)
    clear_hidden_files(yolo_labels_dir)
    yolov5_images_dir = os.path.join(data_base_dir, "images/")
    if not os.path.isdir(yolov5_images_dir):
        os.mkdir(yolov5_images_dir)
    clear_hidden_files(yolov5_images_dir)
    yolov5_labels_dir = os.path.join(data_base_dir, "labels/")
    if not os.path.isdir(yolov5_labels_dir):
        os.mkdir(yolov5_labels_dir)
    clear_hidden_files(yolov5_labels_dir)
    yolov5_images_train_dir = os.path.join(yolov5_images_dir, "train/")
    if not os.path.isdir(yolov5_images_train_dir):
        os.mkdir(yolov5_images_train_dir)
    clear_hidden_files(yolov5_images_train_dir)
    yolov5_images_test_dir = os.path.join(yolov5_images_dir, "val/")
    if not os.path.isdir(yolov5_images_test_dir):
        os.mkdir(yolov5_images_test_dir)
    clear_hidden_files(yolov5_images_test_dir)
    yolov5_labels_train_dir = os.path.join(yolov5_labels_dir, "train/")
    if not os.path.isdir(yolov5_labels_train_dir):
        os.mkdir(yolov5_labels_train_dir)
    clear_hidden_files(yolov5_labels_train_dir)
    yolov5_labels_test_dir = os.path.join(yolov5_labels_dir, "val/")
    if not os.path.isdir(yolov5_labels_test_dir):
        os.mkdir(yolov5_labels_test_dir)
    clear_hidden_files(yolov5_labels_test_dir)
    
    train_file = open(os.path.join(wd, "yolov7_train.txt"), 'w')
    test_file = open(os.path.join(wd, "yolov7_val.txt"), 'w')
    train_file.close()
    test_file.close()
    train_file = open(os.path.join(wd, "yolov7_train.txt"), 'a')
    test_file = open(os.path.join(wd, "yolov7_val.txt"), 'a')
    list_imgs = os.listdir(image_dir)  # list image files
    prob = random.randint(1, 100)
    print("Probability: %d" % prob)
    for i in range(0, len(list_imgs)):
        path = os.path.join(image_dir, list_imgs[i])
        if os.path.isfile(path):
            image_path = image_dir + list_imgs[i]
            voc_path = list_imgs[i]
            (nameWithoutExtention, extention) = os.path.splitext(os.path.basename(image_path))
            (voc_nameWithoutExtention, voc_extention) = os.path.splitext(os.path.basename(voc_path))
            annotation_name = nameWithoutExtention + '.xml'
            annotation_path = os.path.join(annotation_dir, annotation_name)
            label_name = nameWithoutExtention + '.txt'
            label_path = os.path.join(yolo_labels_dir, label_name)
        prob = random.randint(1, 100)
        print("Probability: %d" % prob)
        if (prob < int(TRAIN_RATIO * 100)):  # train dataset
            if os.path.exists(annotation_path):
                train_file.write(image_path + '\n')
                convert_annotation(nameWithoutExtention)  # convert label
                copyfile(image_path, yolov5_images_train_dir + voc_path)
                copyfile(label_path, yolov5_labels_train_dir + label_name)
        else:  # test dataset
            if os.path.exists(annotation_path):
                test_file.write(image_path + '\n')
                convert_annotation(nameWithoutExtention)  # convert label
                copyfile(image_path, yolov5_images_test_dir + voc_path)
                copyfile(label_path, yolov5_labels_test_dir + label_name)
    train_file.close()
    test_file.close()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    在yolov7目录下新建voc2yolo.py文件,复制上面的代码,更改类别标签和xml路径即可。
    
    • 1

    在这里插入图片描述
    在这里插入图片描述

    在这里插入图片描述

    运行voc2yolo.py文件
    
    • 1

    在这里插入图片描述

    修改YOLOv7配置

    请参考YOLOV7训练自己的yolo数据集,这里只说明如何使用VOC训练

    新建voc.yaml文件
    
    • 1

    在这里插入图片描述
    把生成的两个文件yolov7_train.txt和yolov7_val.txt放入路径中,就可以开始训练了
    训练请参考YOLOV7训练自己的yolo数据集

  • 相关阅读:
    QT事件说明
    SpringBoot使用Nacos进行服务注册发现与配置管理
    【Python】条件语句、循环语句、pass语句的使用
    信号:singal
    Maven安装
    快速解决mfc140u.dll丢失问题,找不到mfc140u.dll修复方法分享
    STM32 NVIC中断优先级管理通过结构图快速理解
    Mysql容器化(1)Docker安装MySQL
    基于华为云服务器Docker nginx安装和配置挂载
    低功耗引擎Cliptrix为什么可以成为IOT的高效能工具
  • 原文地址:https://blog.csdn.net/RooKichenn/article/details/126482127