摘要:2022 年 8 月 5 日,2022 阿里云生命科学与智能计算峰会在北京望京昆泰酒店举行,全球健康药物研发中心数据科学部负责人郭晋疆博士,带来了题为《多元科学计算系统在药物研发管线中的搭建与实践》的分享,以下是他的演讲内容整理,供大家阅览:

全球健康药物研发中心数据科学部负责人 郭晋疆
下图摘自 2022 年初的 Nature Reviews,可以看到以科学计算或人工智能驱动的药物研发项目由 2010 年的 6 个增至 2021 年的 158 个, 11 年增长超 28 倍。而传统药物研发项目从 705 个降至 333 个,虽然它依然是主要的药物研发模式,但已呈现下降趋势。

传统药物研发管线需要涉及大量湿实验环节,且多数基于科学家的个人经验和实验结果来进行优化,优化路径长,研发成本高昂,周期也长。与之形成对比的是以计算驱动的药物研发管线,它是一种干湿结合的形式,减少了湿实验环节。并且很多数据驱动的方法学习了历史或全球范围内的实验数据,在优化化合物时更倾向于全局的优化,优化过程更快,成本更低,迭代速度也更快。

上图为全球 24 家以科学计算/AI 驱动的生物制药公司在研药物情况,其中有 15 款计算驱动的药物已经进入临床实验阶段。相信在不久的将来,会有更多计算驱动的药物成功上市,惠及更多病患。
全球健康药物研发中心作为创新型的小分子药物研发机构,也在使用多种计算方法解决药物研发早期阶段不同的问题。

药物研发早期阶段的一般流程如下:
Stage 1:疾病生物学,即疾病的确立。疾病可以粗略地分为外源性疾病和内源性疾病,其中外源性疾病指外来生物体或非生物体侵入人体造成的一些组织性病变,比如有害微生物、病菌、病毒、疟原虫或粉尘等非生物体;内源性疾病指人体基因变异或机能失调造成的组织性病变,比如各类肿瘤、心脑血管疾病、慢性病和罕见病。