• 【洛谷】P2893 Making the Grade G


    题目地址:

    https://www.luogu.com.cn/problem/P2893

    题目描述:
    A straight dirt road connects two fields on FJ’s farm, but it changes elevation more than FJ would like. His cows do not mind climbing up or down a single slope, but they are not fond of an alternating succession of hills and valleys. FJ would like to add and remove dirt from the road so that it becomes one monotonic slope (either sloping up or down).

    You are given N N N integers A 1 , . . . , A N A_1, ... , A_N A1,...,AN( 1 ≤ N ≤ 2 , 000 1 ≤ N ≤ 2,000 1N2,000) describing the elevation ( 0 ≤ A i ≤ 1 , 000 , 000 , 000 0 ≤ A_i ≤ 1,000,000,000 0Ai1,000,000,000) at each of N N N equally-spaced positions along the road, starting at the first field and ending at the other. FJ would like to adjust these elevations to a new sequence B 1 , . . . . , B N B_1, . ... , B_N B1,....,BN that is either nonincreasing or nondecreasing. Since it costs the same amount of money to add or remove dirt at any position along the road, the total cost of modifying the road is

    ∣ A 1 − B 1 ∣ + ∣ A 2 − B 2 ∣ + . . . + ∣ A N − B N ∣ |A_1 - B_1| + |A_2 - B_2| + ... + |A_N - B_N| A1B1+A2B2+...+ANBNPlease compute the minimum cost of grading his road so it becomes a continuous slope. FJ happily informs you that signed 32-bit integers can certainly be used to compute the answer.

    农夫约翰想改造一条路,原来的路的每一段海拔是 A i A_i Ai,修理后是 B i B_i Bi,花费 ∣ A i – B i ∣ |A_i – B_i| AiBi。我们要求修好的路是单调不升或者单调不降的。求最小花费。

    输入格式:
    Line 1 1 1: A single integer: N N N
    Lines 2.. N + 1 2..N+1 2..N+1: Line i + 1 i+1 i+1 contains a single integer elevation: A i A_i Ai

    输出格式:
    Line 1 1 1: A single integer that is the minimum cost for FJ to grade his dirt road so it becomes nonincreasing or nondecreasing in elevation.

    参考https://blog.csdn.net/qq_46105170/article/details/126434434。代码如下:

    #include 
    #include 
    #include 
    using namespace std;
    
    const int N = 2010;
    int n, a[N];
    
    int work() {
      priority_queue<int> heap;
      int res = 0;
      for (int i = 1; i <= n; i++) {
        heap.push(a[i]);
        if (a[i] < heap.top()) {
          res += heap.top() - a[i];
          heap.pop();
          heap.push(a[i]);
        }
      }
    
      return res;
    }
    
    int main() {
      scanf("%d", &n);
      for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
    
      int res = work();
      reverse(a + 1, a + 1 + n);
      res = min(res, work());
      printf("%d\n", res);
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32

    时间复杂度 O ( n log ⁡ n ) O(n\log n) O(nlogn),空间 O ( n ) O(n) O(n)

  • 相关阅读:
    Node.js环境配置级安装vue-cli脚手架
    使用boost::geometry::union_ 合并边界(内、外)- 方案一
    2022的七夕,奉上7个精美的表白代码,同时教大家快速改源码自用
    PBKDF2
    springboot项目基于jdk17、分布式事务seata-server-1.7.1、分库分表shardingSphere5.2.1开发过程中出现的问题
    OCR-easyocr初识
    Day39 JMeter的使用
    会计制度设计
    让开发回归简单模式-基类封装
    pnpm的环境安装以及安装成功后无法使用的问题
  • 原文地址:https://blog.csdn.net/qq_46105170/article/details/126446885