例子:确定某张给定图像中是否存在给定类别(比如人、车、自行车、狗和猫)的目标实例;如果存在,就返回每个目标实例的空间位置和覆盖范围。作为图像理解和计算机视觉的基石,目标检测是解决分割、场景理解、目标追踪、图像描述、事件检测和活动识别等更复杂更高层次的视觉任务的基础。
目标检测具有巨大的实用价值和应用前景。
应用领域包括人脸检测、行人检测、车辆检测、卫星图像中道路的检测、车载摄像机图像中的障碍物检测、医学影像在的病灶检测等。
应用场景包括长/视频领域、医学场景、安防领域、自动驾驶等等众多领域
行人车辆检测

多人脸的检测:

这里我们举一些使用的场景

包含一个用于区域提议的预处理步骤,使得整体流程是两级式的。代表:R-CNN、SPP-Net、Fast R-CNN、Faster R-CNN和R-FCN等
即无区域提议的框架,这是一种单独提出的方法,不会将检测提议分开,使得整个流程是单级式的。代表:OverFeat、YOLOv1、YOLOv2、YOLOv3、SSD和RetinaNet等

几种类别结构xmind形式如下:



其中我们得出来的(x,y,w,h)有一个专业的名词,叫做bounding box(bbox).
在分类的时候我们直接输出各个类别的概率,如果再加上定位的话,我们可以考虑在网络的最后输出加上位置信息。下面我们考虑图中只有一个物体的检测时候,我们可以有以下方法去进行训练我们的模型
增加一个全连接层,即为FC1、FC2
FC1:作为类别的输出
FC2:作为这个物体位置数值的输出

假设有10个类别,输出[p1,p2,p3,...,p10],然后输出这一个对象的四个位置信息[x,y,w,h]。同理知道要网络输出什么,如果衡量整个网络的损失

在目标检测当中,对bbox主要由两种类别。

一般在目标检测当中,我们预测的框有可能很多个,真实框GT也有很多个。
目标检测在很多领域都有应用需求,包括人脸检测,行人检测,车辆检测以及遥感影像中的重要地物检测等。