活动地址:CSDN21天学习挑战赛

- import matplotlib.pyplot as plt
- # 支持中文
- plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
- plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
-
- import os,PIL,random,pathlib
-
- # 设置随机种子尽可能使结果可以重现
- import numpy as np
- np.random.seed(1)
-
- # 设置随机种子尽可能使结果可以重现
- import tensorflow as tf
- tf.random.set_seed(1)
- data_dir = "D:/jupyter notebook/CSDN21天学习计划/captcha"
- data_dir = pathlib.Path(data_dir)
-
- all_image_paths = list(data_dir.glob('*'))
- all_image_paths = [str(path) for path in all_image_paths]
-
- # 打乱数据
- random.shuffle(all_image_paths)
-
- # 获取数据标签
- all_label_names = [path.split("\\")[4].split(".")[0] for path in all_image_paths]
-
- image_count = len(all_image_paths)
- print("图片总数为:",image_count)
图片总数为: 1070
- plt.figure(figsize=(10,5))
-
- for i in range(20):
- plt.subplot(5,4,i+1)
- plt.xticks([])
- plt.yticks([])
- plt.grid(False)
-
- # 显示图片
- images = plt.imread(all_image_paths[i])
- plt.imshow(images)
- # 显示标签
- plt.xlabel(all_label_names[i])
-
- plt.show()

- number = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
- alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']
- char_set = number + alphabet
- char_set_len = len(char_set)
- label_name_len = len(all_label_names[0])
-
-
- # 将字符串数字化
- def text2vec(text):
- vector = np.zeros([label_name_len, char_set_len])
- for i, c in enumerate(text):
- idx = char_set.index(c)
- vector[i][idx] = 1.0
- return vector
-
- all_labels = [text2vec(i) for i in all_label_names]
- def preprocess_image(image):
- image = tf.image.decode_jpeg(image, channels=1)
- image = tf.image.resize(image, [50, 200])
- return image/255.0
-
- def load_and_preprocess_image(path):
- image = tf.io.read_file(path)
- return preprocess_image(image)
- AUTOTUNE = tf.data.experimental.AUTOTUNE
-
- path_ds = tf.data.Dataset.from_tensor_slices(all_image_paths)
- image_ds = path_ds.map(load_and_preprocess_image, num_parallel_calls=AUTOTUNE)
- label_ds = tf.data.Dataset.from_tensor_slices(all_labels)
-
- image_label_ds = tf.data.Dataset.zip((image_ds, label_ds))
- image_label_ds
.
- train_ds = image_label_ds.take(1000) # 前1000个batch
- val_ds = image_label_ds.skip(1000) # 跳过前1000,选取后面的


- BATCH_SIZE = 16
-
- train_ds = train_ds.batch(BATCH_SIZE)
- train_ds = train_ds.prefetch(buffer_size=AUTOTUNE)
-
- val_ds = val_ds.batch(BATCH_SIZE)
- val_ds = val_ds.prefetch(buffer_size=AUTOTUNE)
- val_ds
- from tensorflow.keras import datasets, layers, models
-
- model = models.Sequential([
-
- layers.Conv2D(32, (3, 3), activation='relu', input_shape=(50, 200, 1)),#卷积层1,卷积核3*3
- layers.MaxPooling2D((2, 2)), #池化层1,2*2采样
- layers.Conv2D(64, (3, 3), activation='relu'), #卷积层2,卷积核3*3
- layers.MaxPooling2D((2, 2)), #池化层2,2*2采样
-
- layers.Flatten(), #Flatten层,连接卷积层与全连接层
- layers.Dense(1000, activation='relu'), #全连接层,特征进一步提取
-
- layers.Dense(label_name_len * char_set_len),
- layers.Reshape([label_name_len, char_set_len]),
- layers.Softmax() #输出层,输出预期结果
- ])
- # 打印网络结构
- model.summary()

- model.compile(optimizer="adam",
- loss='categorical_crossentropy',
- metrics=['accuracy'])
- epochs = 20
-
- history = model.fit(
- train_ds,
- validation_data=val_ds,
- epochs=epochs
- )

- acc = history.history['accuracy']
- val_acc = history.history['val_accuracy']
-
- loss = history.history['loss']
- val_loss = history.history['val_loss']
-
- epochs_range = range(epochs)
-
- plt.figure(figsize=(12, 4))
- plt.subplot(1, 2, 1)
-
- plt.plot(epochs_range, acc, label='Training Accuracy')
- plt.plot(epochs_range, val_acc, label='Validation Accuracy')
- plt.legend(loc='lower right')
- plt.title('Training and Validation Accuracy')
-
- plt.subplot(1, 2, 2)
- plt.plot(epochs_range, loss, label='Training Loss')
- plt.plot(epochs_range, val_loss, label='Validation Loss')
- plt.legend(loc='upper right')
- plt.title('Training and Validation Loss')
- plt.show()

- # 保存模型
- model.save('model/12_model.h5')
- # 加载模型
- new_model = tf.keras.models.load_model('model/12_model.h5')
- def vec2text(vec):
- """
- 还原标签(向量->字符串)
- """
- text = []
- for i, c in enumerate(vec):
- text.append(char_set[c])
- return "".join(text)
-
- plt.figure(figsize=(10, 8)) # 图形的宽为10高为8
-
- for images, labels in val_ds.take(1):
- for i in range(6):
- ax = plt.subplot(5, 2, i + 1)
- # 显示图片
- plt.imshow(images[i])
-
- # 需要给图片增加一个维度
- img_array = tf.expand_dims(images[i], 0)
-
- # 使用模型预测验证码
- predictions = model.predict(img_array)
- plt.title(vec2text(np.argmax(predictions, axis=2)[0]))
-
- plt.axis("off")

可以看到验证码中大部分字符预测都是对的,但是少部分字符还是存在问题,大家可以试试优化一下网络结构,调整网络参数等。本案例适合练习优化技巧,借着这个案例了解一下不同的调整对结果有什么不同。
参考资料:
>- 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/k-vYaC8l7uxX51WoypLkTw) 中的学习记录博客
>- 参考文章地址: [🔗深度学习100例-卷积神经网络(CNN)识别验证码 | 第12天](https://mtyjkh.blog.csdn.net/article/details/118211253)