• 深度学习CNN--眼睛姿态识别联练习



    活动地址:CSDN21天学习挑战赛
    这里就讲述整个识别流程,提炼出几个和以往发表文章不同的进行表述,相关识别文章参考连接

    1、混淆矩阵
    混淆矩阵通常用于评价训练模型的好坏,这里简单的列举一个二分类的例子,有类别A和B,预测结果正确且为A的数量记为TA,预测结果正确且为B的数量记作TB,那预测错误且为A的为FA,预测错误且为B的记为FB,这样就做成了一个混淆矩阵。混淆矩阵展示效果如下可以直观的看出预测结果及数量。
    在这里插入图片描述
    下面是混淆矩阵的代码

    from sklearn.metrics import confusion_matrix
    import seaborn as sns
    import pandas as pd
    
    # 定义一个绘制混淆矩阵图的函数
    def plot_cm(labels, predictions):
        
        # 生成混淆矩阵
        conf_numpy = confusion_matrix(labels, predictions)
        # 将矩阵转化为 DataFrame
        conf_df = pd.DataFrame(conf_numpy, index=class_names ,columns=class_names)  
        
        plt.figure(figsize=(8,7))
        
        sns.heatmap(conf_df, annot=True, fmt="d", cmap="BuPu")
        
        plt.title('混淆矩阵',fontsize=15)
        plt.ylabel('真实值',fontsize=14)
        plt.xlabel('预测值',fontsize=14)
    val_pre   = []
    val_label = []
    
    for images, labels in val_ds:#这里可以取部分验证数据(.take(1))生成混淆矩阵
        for image, label in zip(images, labels):
            # 需要给图片增加一个维度
            img_array = tf.expand_dims(image, 0) 
            # 使用模型预测图片中的人物
            prediction = model.predict(img_array)
    
            val_pre.append(class_names[np.argmax(prediction)])
            val_label.append(class_names[label])
    plot_cm(val_label, val_pre)
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33

    下面是眼睛识别的混淆矩阵结果
    在这里插入图片描述
    2、常用网络结构调用方法
    tensorflow自带许多程度的神经网络,可以通过函数进行调用,下面以VGG16模型调用为例代码如下

    model = tf.keras.applications.VGG16()
    # 打印模型信息
    model.summary()
    
    
    • 1
    • 2
    • 3
    • 4

    下面列举出可以直接调用的网络模型:
    在这里插入图片描述
    3、眼睛数据集连接如下:
    链接:https://pan.baidu.com/s/12Waf0no8vKHhqUK8RzGmUA
    提取码:n2v0
    里面有四个文件:
    在这里插入图片描述
    在这里插入图片描述
    4、最后给出完整代码参考

    import matplotlib.pyplot as plt
    # 支持中文
    plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
    plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
    
    import os,PIL
    
    # 设置随机种子尽可能使结果可以重现
    import numpy as np
    np.random.seed(1)
    
    # 设置随机种子尽可能使结果可以重现
    import tensorflow as tf
    tf.random.set_seed(1)
    
    import pathlib
    data_dir = "H:\python_project\python辅助算法\data\\017_Eye_dataset"
    
    data_dir = pathlib.Path(data_dir)
    image_count = len(list(data_dir.glob('*/*')))
    
    print("图片总数为:",image_count)
    # 预处理数据
    batch_size = 64
    img_height = 224
    img_width = 224
    """
    关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
    """
    train_ds = tf.keras.preprocessing.image_dataset_from_directory(
        data_dir,
        validation_split=0.2,
        subset="training",
        seed=12,
        image_size=(img_height, img_width),
        batch_size=batch_size)
    """
    关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
    """
    val_ds = tf.keras.preprocessing.image_dataset_from_directory(
        data_dir,
        validation_split=0.2,
        subset="validation",
        seed=12,
        image_size=(img_height, img_width),
        batch_size=batch_size)
    class_names = train_ds.class_names
    print(class_names)
    # 配置数据集
    AUTOTUNE = tf.data.AUTOTUNE
    
    train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
    val_ds   = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
    # 调用模型
    model = tf.keras.applications.VGG16()
    # 打印模型信息
    model.summary()
    # 设置初始学习率
    initial_learning_rate = 1e-4
    
    lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
            initial_learning_rate,
            decay_steps=20,      # 敲黑板!!!这里是指 steps,不是指epochs
            decay_rate=0.96,     # lr经过一次衰减就会变成 decay_rate*lr
            staircase=True)
    
    # 将指数衰减学习率送入优化器
    optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)
    # 编译
    model.compile(optimizer=optimizer,
                  loss     ='sparse_categorical_crossentropy',
                  metrics  =['accuracy'])
    epochs = 10
    # 训练
    history = model.fit(
        train_ds,
        validation_data=val_ds,
        epochs=epochs
    )
    # 训练过程存储在history里面
    acc = history.history['accuracy']
    val_acc = history.history['val_accuracy']
    
    loss = history.history['loss']
    val_loss = history.history['val_loss']
    
    epochs_range = range(epochs)
    # 展示训练结果
    plt.figure(figsize=(12, 4))
    plt.subplot(1, 2, 1)
    
    plt.plot(epochs_range, acc, label='Training Accuracy')
    plt.plot(epochs_range, val_acc, label='Validation Accuracy')
    plt.legend(loc='lower right')
    plt.title('Training and Validation Accuracy')
    
    plt.subplot(1, 2, 2)
    plt.plot(epochs_range, loss, label='Training Loss')
    plt.plot(epochs_range, val_loss, label='Validation Loss')
    plt.legend(loc='upper right')
    plt.title('Training and Validation Loss')
    plt.show()
    
    from sklearn.metrics import confusion_matrix
    import seaborn as sns
    import pandas as pd
    
    
    # 定义一个绘制混淆矩阵图的函数
    def plot_cm(labels, predictions):
        # 生成混淆矩阵
        conf_numpy = confusion_matrix(labels, predictions)
        # 将矩阵转化为 DataFrame
        conf_df = pd.DataFrame(conf_numpy, index=class_names, columns=class_names)
    
        plt.figure(figsize=(8, 7))
    
        sns.heatmap(conf_df, annot=True, fmt="d", cmap="BuPu")
    
        plt.title('混淆矩阵', fontsize=15)
        plt.ylabel('真实值', fontsize=14)
        plt.xlabel('预测值', fontsize=14)
    val_pre   = []
    val_label = []
    
    for images, labels in val_ds:#这里可以取部分验证数据(.take(1))生成混淆矩阵
        for image, label in zip(images, labels):
            # 需要给图片增加一个维度
            img_array = tf.expand_dims(image, 0)
            # 使用模型预测图片中的人物
            prediction = model.predict(img_array)
    
            val_pre.append(class_names[np.argmax(prediction)])
            val_label.append(class_names[label])
    # 保存模型
    model.save('model/17_model.h5')
    # 加载模型
    new_model = tf.keras.models.load_model('model/17_model.h5')
    # 采用加载的模型(new_model)来看预测结果
    
    plt.figure(figsize=(10, 5))  # 图形的宽为10高为5
    plt.suptitle("预测结果展示")
    
    for images, labels in val_ds.take(1):
        for i in range(8):
            ax = plt.subplot(2, 4, i + 1)
    
            # 显示图片
            plt.imshow(images[i].numpy().astype("uint8"))
    
            # 需要给图片增加一个维度
            img_array = tf.expand_dims(images[i], 0)
    
            # 使用模型预测图片中的人物
            predictions = new_model.predict(img_array)
            plt.title(class_names[np.argmax(predictions)])
    
            plt.axis("off")
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159

    下面给出VGG16的具体参数展示,这个模型参数比较多,有很多种方法可以进行优化

    Model: "vgg16"
    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    input_1 (InputLayer)         [(None, 224, 224, 3)]     0         
    _________________________________________________________________
    block1_conv1 (Conv2D)        (None, 224, 224, 64)      1792      
    _________________________________________________________________
    block1_conv2 (Conv2D)        (None, 224, 224, 64)      36928     
    _________________________________________________________________
    block1_pool (MaxPooling2D)   (None, 112, 112, 64)      0         
    _________________________________________________________________
    block2_conv1 (Conv2D)        (None, 112, 112, 128)     73856     
    _________________________________________________________________
    block2_conv2 (Conv2D)        (None, 112, 112, 128)     147584    
    _________________________________________________________________
    block2_pool (MaxPooling2D)   (None, 56, 56, 128)       0         
    _________________________________________________________________
    block3_conv1 (Conv2D)        (None, 56, 56, 256)       295168    
    _________________________________________________________________
    block3_conv2 (Conv2D)        (None, 56, 56, 256)       590080    
    _________________________________________________________________
    block3_conv3 (Conv2D)        (None, 56, 56, 256)       590080    
    _________________________________________________________________
    block3_pool (MaxPooling2D)   (None, 28, 28, 256)       0         
    _________________________________________________________________
    block4_conv1 (Conv2D)        (None, 28, 28, 512)       1180160   
    _________________________________________________________________
    block4_conv2 (Conv2D)        (None, 28, 28, 512)       2359808   
    _________________________________________________________________
    block4_conv3 (Conv2D)        (None, 28, 28, 512)       2359808   
    _________________________________________________________________
    block4_pool (MaxPooling2D)   (None, 14, 14, 512)       0         
    _________________________________________________________________
    block5_conv1 (Conv2D)        (None, 14, 14, 512)       2359808   
    _________________________________________________________________
    block5_conv2 (Conv2D)        (None, 14, 14, 512)       2359808   
    _________________________________________________________________
    block5_conv3 (Conv2D)        (None, 14, 14, 512)       2359808   
    _________________________________________________________________
    block5_pool (MaxPooling2D)   (None, 7, 7, 512)         0         
    _________________________________________________________________
    flatten (Flatten)            (None, 25088)             0         
    _________________________________________________________________
    fc1 (Dense)                  (None, 4096)              102764544 
    _________________________________________________________________
    fc2 (Dense)                  (None, 4096)              16781312  
    _________________________________________________________________
    predictions (Dense)          (None, 1000)              4097000   
    =================================================================
    Total params: 138,357,544
    Trainable params: 138,357,544
    Non-trainable params: 0
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53

    下面是训练曲线(训练和验证)的代码展示及曲线图:

    acc = history.history['accuracy']
    val_acc = history.history['val_accuracy']
    
    loss = history.history['loss']
    val_loss = history.history['val_loss']
    
    epochs_range = range(epochs)
    
    plt.figure(figsize=(12, 4))
    plt.subplot(1, 2, 1)
    
    plt.plot(epochs_range, acc, label='Training Accuracy')
    plt.plot(epochs_range, val_acc, label='Validation Accuracy')
    plt.legend(loc='lower right')
    plt.title('Training and Validation Accuracy')
    
    plt.subplot(1, 2, 2)
    plt.plot(epochs_range, loss, label='Training Loss')
    plt.plot(epochs_range, val_loss, label='Validation Loss')
    plt.legend(loc='upper right')
    plt.title('Training and Validation Loss')
    plt.show()
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23

    在这里插入图片描述

  • 相关阅读:
    harbor总结
    Scrapy08:scrapy-deltafetch,让爬虫有了记忆
    网络安全实战之靶场渗透技术
    Django模型的字段选项
    c++文件解析之换行(CRLF、LF、CR)
    windows C++-在 C++/WinRT 中使用委托处理事件(下)
    HackMyVm,Chapter 1: Venu 复现 01 - 24
    编程小白的自学笔记十四(python办公自动化创建、复制、移动文件和文件夹)
    linux 定时执行脚本
    基于单片机智能停车系统的设计与实现(论文+源码)_kaic
  • 原文地址:https://blog.csdn.net/self_Name_/article/details/126328288