• 数据科学与机器学习案例之Stacking集成方法对鸢尾花进行分类


    数据科学与机器学习案例之客户的信用风险与预测

    数据科学与机器学习之信用卡欺诈识别(严重类失衡数据建模)

    数据科学与机器学习案例之汽车目标客户销售策略研究

    数据科学与机器学习案例之WiFi定位系统的位置预测

    数据科学与机器学习案例之Stacking集成方法对鸢尾花进行分类

    数据介绍

    鸢尾花数据是R语言中自带的数据,这里对鸢尾花数据进行Stacking模型集成对鸢尾花数据进行分类。

    > str(iris)
    'data.frame':   150 obs. of  5 variables:
     $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
     $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
     $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
     $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
     $ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

    对于鸢尾花中的数据进行高维可视化,我们使用R语言FactoMineR中的函数对鸢尾花数据进行降维展示。

    > library(ggplot2)
    > library(factoextra)
    > library(FactoMineR)
    > df <- iris[c(1, 2, 3, 4)]
    > iris.pca<- PCA(df, graph = FALSE)
    > fviz_pca_ind(iris.pca,
    +  geom.ind = "point", 
    +  pointsize =3,pointshape = 21,fill.ind = iris$Species, 
    +  palette = c("#E41A1C", "#4DAF4A", "#999999"),
    +  addEllipses = TRUE,  legend.title = "Groups",
    +  title="")+theme_grey()
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12

    在这里插入图片描述

    Stacking模型集成

    数据处理

    > library(ggplot2)
    > library(data.table)
    > library(mltools)
    > library(class) # k均值建模
    > library(LiblineaR)
    > setwd('E:\\RClass\\建模\\模型集成对鸢尾花数据进行分类')
    > iris1 = data.table(iris)
    > iris1[,Sepal.Length := scale(Sepal.Length,T,T)]
    > iris1[,Sepal.Width := scale(Sepal.Width,T,T)]
    > iris1[,Petal.Length := scale(Petal.Length,T,T)]
    > iris1[,Petal.Width := scale(Petal.Width,T,T)]
    > 
    > iris1[,Distance := sqrt(Sepal.Length^2 + Sepal.Width^2 +
    +                        Petal.Length^2 + Petal.Width^2)]
    > 
    > iris1[,ID := 1:nrow(iris1)]
    > colnames(iris1)
    > p1 = caret::createDataPartition(iris$Species,p = .75,list = TRUE)[[1]]
    > data.train = iris1[p1,]
    > data.test = iris1[-p1,]
    > 
    > data.train[,FoldID := folds(Species,nfolds = 5,stratified = T,seed = 2022)]
    
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24

    knn

    > knncv <- list()
    > knncv[['features']] <- c('Sepal.Length','Sepal.Width','Petal.Length','Petal.Width')
    > knncv[['para']] <- CJ(k = seq(1,30))
    > knncv[['bestscore']] <- 0
    > 
    > for(i in seq_len(nrow(knncv[['para']]))){
    +         scores <- numeric()
    +         predlist <- list()
    +         para <- knncv[['para']][i]
    +       for(folds in 1:5){
    + 
    +           testFold <- data.train[J(FoldID = folds),on = 'FoldID']
    +           trainFold <- data.train[!J(FoldID = folds),on = 'FoldID']
    +           
    +           testFold[,Pred:=knn(train = trainFold[,knncv[['features']],with = F],
    +                           test = testFold[,knncv[['features']],with = F],
    +                           cl = trainFold$Species,k = para$k)]  
    +           predlist <- c(predlist,list(testFold[,list(ID,FoldID,Pred)]))
    +           
    +           score <- mean(testFold$Species == testFold$Pred)
    +           scores <- c(scores,score) }
    + 
    +           score <- mean(scores,na.rm = T)
    +           knncv[['para']][i,Score:=score] # 打印每个参数的值
    +         print(paste('Para:',paste(colnames(knncv[['para']])),knncv[['para']][i],collapse = '|'))
    + 
    +        if(score > knncv[['bestscore']]){
    +              knncv[['bestscore']] <- score
    +              knncv[['bestscores']] <- scores
    +              knncv[['bestpara']] <- knncv[['para']][i] 
    +              knncv[['bestresults']] <- rbindlist(predlist)
    +                                         }
    +                            }
    [1] "Para: k 1|Para: Score 0.930952380952381"
    [1] "Para: k 2|Para: Score 0.929761904761905"
    [1] "Para: k 3|Para: Score 0.929761904761905"
    [1] "Para: k 4|Para: Score 0.920238095238095"
    [1] "Para: k 5|Para: Score 0.948809523809524"
    [1] "Para: k 6|Para: Score 0.947619047619048"
    [1] "Para: k 7|Para: Score 0.957142857142857"
    [1] "Para: k 8|Para: Score 0.957142857142857"
    [1] "Para: k 9|Para: Score 0.957142857142857"
    [1] "Para: k 10|Para: Score 0.957142857142857"
    [1] "Para: k 11|Para: Score 0.957142857142857"
    [1] "Para: k 12|Para: Score 0.939285714285714"
    [1] "Para: k 13|Para: Score 0.957142857142857"
    [1] "Para: k 14|Para: Score 0.957142857142857"
    [1] "Para: k 15|Para: Score 0.957142857142857"
    [1] "Para: k 16|Para: Score 0.957142857142857"
    [1] "Para: k 17|Para: Score 0.957142857142857"
    [1] "Para: k 18|Para: Score 0.948809523809524"
    [1] "Para: k 19|Para: Score 0.932142857142857"
    [1] "Para: k 20|Para: Score 0.94047619047619"
    [1] "Para: k 21|Para: Score 0.948809523809524"
    [1] "Para: k 22|Para: Score 0.94047619047619"
    [1] "Para: k 23|Para: Score 0.923809523809524"
    [1] "Para: k 24|Para: Score 0.923809523809524"
    [1] "Para: k 25|Para: Score 0.91547619047619"
    [1] "Para: k 26|Para: Score 0.91547619047619"
    [1] "Para: k 27|Para: Score 0.91547619047619"
    [1] "Para: k 28|Para: Score 0.886904761904762"
    [1] "Para: k 29|Para: Score 0.914285714285714"
    [1] "Para: k 30|Para: Score 0.923809523809524"
    > knncv[["bestpara"]] # 小样本情形下的准确率很差 
       k     Score
    1: 7 0.9571429
    > 
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68

    我们将鸢尾花数据分为了训练集与测试集,使用k近邻模型进行了5折交叉验证,选择出的最优参数为k=7,模型准确率为95.7%,理论上讲Stacking模型集成能提高鸢尾花数据分类的准确率,但是k近邻模型的准确率已经达到95.7%,在使用Stacking模型集成上并不能保证会提高准确率。

    > ggplot(knncv[['para']],aes(x=k,y = Score))+
    + geom_line()+
    + geom_point()+
    + theme_grey()
    
    
    • 1
    • 2
    • 3
    • 4
    • 5

    svm

    > svmcv <- list()
    > svmcv[["features"]] <- c("Sepal.Length", "Sepal.Width", "Petal.Length",
    +                          'Petal.Width','Distance')
    > svmcv[["para"]] <- CJ(type=1:5, cost=c(.01, .1, 1, 10, 100, 1000, 2000), Score=NA_real_)
    > svmcv[["BestScore"]] <- 0
    > 
    > for(i in seq_len(nrow(svmcv[['para']]))){
    + 
    +        scores <- numeric() # 储存每折交叉验证得到的准确率
    +        predlist <- list() # 储存五折交叉验证的结果
    +        para <- svmcv[['para']][i] # 参数
    +        
    +      for(folds in 1:5){
    +        testfold <- data.train[J(FoldID = folds),on = 'FoldID'] 
    +        trainfold <- data.train[!J(FoldID = folds),on = 'FoldID']
    +        
    +        # 对每折的数据进行预测
    +        svm <- LiblineaR(data = trainfold[,svmcv$features,with = F],
    +                         target = trainfold$Species,
    +                         type = para$type,
    +                         cost = para$cost )  # 对交叉验证中的数据进行预测
    +        testfold[,Pred:=predict(svm,testfold[,svmcv$features,with = F])$predictions]  
    +        
    +        scores <- c(scores,mean(testfold$Species == testfold$Pred,na.rm = T))
    +        
    +        predlist <-c(predlist,list(testfold[,list(ID,FoldID,Pred)]))
    +                } 
    +        score <- mean(scores) # 对参数下的5折交叉验证进行平均
    +        svmcv[['para']][i,Score:=score]
    +        print(paste('Para:',paste(colnames(svmcv[['para']])),
    +               svmcv[['para']][i],collapse = '|')) # 输出每个参数的汇总值
    +        if(score > svmcv[['BestScore']]){
    +               svmcv[['BestScore']] <- score
    +               svmcv[['BestScores']] <- scores
    +               svmcv[['BestPara']] <- svmcv[['para']][i]
    +               svmcv[['BestResults']] <- rbindlist(predlist) }
    +                                   }
    [1] "Para: type 1|Para: cost 0.01|Para: Score 0.853571428571429"
    [1] "Para: type 1|Para: cost 0.1|Para: Score 0.939285714285714"
    [1] "Para: type 1|Para: cost 1|Para: Score 0.955952380952381"
    [1] "Para: type 1|Para: cost 10|Para: Score 0.975"
    [1] "Para: type 1|Para: cost 100|Para: Score 0.964285714285714"
    [1] "Para: type 1|Para: cost 1000|Para: Score 0.947619047619048"
    [1] "Para: type 1|Para: cost 2000|Para: Score 0.938095238095238"
    [1] "Para: type 2|Para: cost 0.01|Para: Score 0.853571428571429"
    [1] "Para: type 2|Para: cost 0.1|Para: Score 0.939285714285714"
    [1] "Para: type 2|Para: cost 1|Para: Score 0.955952380952381"
    [1] "Para: type 2|Para: cost 10|Para: Score 0.975"
    [1] "Para: type 2|Para: cost 100|Para: Score 0.973809523809524"
    [1] "Para: type 2|Para: cost 1000|Para: Score 0.964285714285714"
    [1] "Para: type 2|Para: cost 2000|Para: Score 0.964285714285714"
    [1] "Para: type 3|Para: cost 0.01|Para: Score 0.666666666666667"
    [1] "Para: type 3|Para: cost 0.1|Para: Score 0.913095238095238"
    [1] "Para: type 3|Para: cost 1|Para: Score 0.947619047619048"
    [1] "Para: type 3|Para: cost 10|Para: Score 0.957142857142857"
    [1] "Para: type 3|Para: cost 100|Para: Score 0.955952380952381"
    [1] "Para: type 3|Para: cost 1000|Para: Score 0.946428571428571"
    [1] "Para: type 3|Para: cost 2000|Para: Score 0.946428571428571"
    [1] "Para: type 4|Para: cost 0.01|Para: Score 0.666666666666667"
    [1] "Para: type 4|Para: cost 0.1|Para: Score 0.939285714285714"
    [1] "Para: type 4|Para: cost 1|Para: Score 0.975"
    [1] "Para: type 4|Para: cost 10|Para: Score 0.96547619047619"
    [1] "Para: type 4|Para: cost 100|Para: Score 0.955952380952381"
    [1] "Para: type 4|Para: cost 1000|Para: Score 0.947619047619048"
    [1] "Para: type 4|Para: cost 2000|Para: Score 0.947619047619048"
    [1] "Para: type 5|Para: cost 0.01|Para: Score 0.666666666666667"
    [1] "Para: type 5|Para: cost 0.1|Para: Score 0.921428571428571"
    [1] "Para: type 5|Para: cost 1|Para: Score 0.957142857142857"
    [1] "Para: type 5|Para: cost 10|Para: Score 0.975"
    [1] "Para: type 5|Para: cost 100|Para: Score 0.975"
    [1] "Para: type 5|Para: cost 1000|Para: Score 0.975"
    [1] "Para: type 5|Para: cost 2000|Para: Score 0.975"
    > 
    > svmcv$BestPara
       type cost Score
    1:    1   10 0.975
    > ggplot(svmcv[['para']],aes(x = cost,y = Score,color = factor(type)))+
    + geom_line()+
    + geom_point()+
    + scale_x_log10()
    > 
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81

    Stacking模型集成

    > dim(knncv[['bestresults']])
    [1] 114   3
    > dim(svmcv[['BestResults']])
    [1] 114   3
    > 
    > metas.knn <- knncv[['bestresults']]
    > metas.svm <- svmcv[['BestResults']]
    > 
    > class(metas.knn)
    [1] "data.table" "data.frame"
    > dim(metas.knn)
    [1] 114   3
    > head(metas.knn)
       ID FoldID   Pred
    1:  1      1 setosa
    2:  3      1 setosa
    3:  5      1 setosa
    4: 19      1 setosa
    5: 24      1 setosa
    6: 26      1 setosa
    > 
    > data.train[metas.knn,Metas.knn := Pred,on = 'ID']
    > data.train[metas.svm,Metas.svm:= Pred,on = 'ID']
    > 
    > data.train <- one_hot(data.train, cols=c("Metas.knn", "Metas.svm"), dropCols=FALSE) # 进行one_hot编码
    > lrcv <- list()
    > lrcv[['features']] <- setdiff(colnames(data.train),c('ID','Species','FoldID','Metas.knn','Metas.svm'))
    > lrcv[['para']] <- CJ(type = c(0,6,7),cost = c(.001, .01, .1, 1, 10, 100))
    > lrcv[['bestscore']] <- 0
    > 
    > for(i in seq_len(nrow(lrcv[['para']]))){
    +  
    +        scores <- numeric()
    +        predlist <- list()
    +        para <- lrcv[['para']][i]
    +     for(folds in 1:5){
    +         testfold <- data.train[J(FoldID =folds),on = 'FoldID']
    +         trainfold <- data.train[!J(FoldID =folds),on = 'FoldID']
    +         
    +         logreg <- LiblineaR(data = trainfold[,lrcv$features,with = F],
    +                      target = trainfold$Species,type = para$type,cost = para$cost)
    +         testfold[,Pred := predict(logreg,testfold[,lrcv[['features']],with = F])$predictions]
    + 
    +         scores <- c(scores,mean(testfold$Species == testfold$Pred))
    +         predlist <- c(predlist,list(testfold[,list(ID,FoldID,Pred)]))
    +                        }
    +         score <- mean(scores)
    +         lrcv[['para']][i,Score:=score]
    +         print(paste('Para :',paste(colnames(lrcv[['para']])),
    +                   lrcv[['para']][i],collapse = '|'))
    +         
    +         if(score > lrcv[['bestscore']]){
    +                    lrcv[['bestscore']] <- score
    +                    lrcv[['bestscores']] <- scores
    +                    lrcv[['bestpara']] <- lrcv[['para']][i]
    +                    lrcv[['bestresult']] <- rbindlist(predlist)
    +                                     }}
    [1] "Para : type 0|Para : cost 0.001|Para : Score 0.921428571428571"
    [1] "Para : type 0|Para : cost 0.01|Para : Score 0.96547619047619"
    [1] "Para : type 0|Para : cost 0.1|Para : Score 0.948809523809524"
    [1] "Para : type 0|Para : cost 1|Para : Score 0.96547619047619"
    [1] "Para : type 0|Para : cost 10|Para : Score 0.96547619047619"
    [1] "Para : type 0|Para : cost 100|Para : Score 0.96547619047619"
    [1] "Para : type 6|Para : cost 0.001|Para : Score 0.333333333333333"
    [1] "Para : type 6|Para : cost 0.01|Para : Score 0.333333333333333"
    [1] "Para : type 6|Para : cost 0.1|Para : Score 0.955952380952381"
    [1] "Para : type 6|Para : cost 1|Para : Score 0.975"
    [1] "Para : type 6|Para : cost 10|Para : Score 0.96547619047619"
    [1] "Para : type 6|Para : cost 100|Para : Score 0.96547619047619"
    [1] "Para : type 7|Para : cost 0.001|Para : Score 0.929761904761905"
    [1] "Para : type 7|Para : cost 0.01|Para : Score 0.96547619047619"
    [1] "Para : type 7|Para : cost 0.1|Para : Score 0.948809523809524"
    [1] "Para : type 7|Para : cost 1|Para : Score 0.96547619047619"
    [1] "Para : type 7|Para : cost 10|Para : Score 0.96547619047619"
    [1] "Para : type 7|Para : cost 100|Para : Score 0.96547619047619"
    > 
    > data.test[,Metas.knn := knn(train = data.train[,knncv[['features']],with = F],
    +                  test = data.test[,knncv[['features']],with = F],
    +                  cl = data.train$Species,
    +                  k = knncv$bestpara$k)]
    > 
    > svm <- LiblineaR(data = data.train[,svmcv[['features']],with = F],
    +                  target = data.train$Species,
    +                  type = svmcv[['BestPara']]$type,
    +                  cost = svmcv[['BestPara']]$cost)
    > data.test[,Metas.svm := predict(svm,data.test[,svmcv[['features']],with = F])$predictions]
    > 
    > 
    > data.test <- one_hot(data.test,cols=c("Metas.knn", "Metas.svm"),dropCols=FALSE)
    > lr <- LiblineaR(data = data.train[,lrcv[['features']],with = F],
    +                 target = data.train$Species,
    +                 type = lrcv[['bestpara']]$type,
    +                 cost = lrcv[['bestpara']]$cost)
    > 
    > data.test[,Metas.lr := predict(lr,data.test[,lrcv[['features']],with = F])$predictions]
    > head(data.test)
       Sepal.Length Sepal.Width Petal.Length Petal.Width Species Distance ID Metas.knn
    1:   -0.5353840   1.9333146    -1.165809   -1.048667  setosa 2.546204  6    setosa
    2:   -1.0184372   0.7861738    -1.279104   -1.311052  setosa 2.238358  8    setosa
    3:   -0.5353840   1.4744583    -1.279104   -1.311052  setosa 2.411561 11    setosa
    4:   -1.2599638  -0.1315388    -1.335752   -1.442245  setosa 2.338614 13    setosa
    5:   -0.5353840   0.7861738    -1.165809   -1.311052  setosa 1.995664 21    setosa
    6:   -0.8976739   1.4744583    -1.279104   -1.048667  setosa 2.390744 22    setosa
       Metas.knn_setosa Metas.knn_versicolor Metas.knn_virginica Metas.svm Metas.svm_setosa
    1:                1                    0                   0    setosa                1
    2:                1                    0                   0    setosa                1
    3:                1                    0                   0    setosa                1
    4:                1                    0                   0    setosa                1
    5:                1                    0                   0    setosa                1
    6:                1                    0                   0    setosa                1
       Metas.svm_versicolor Metas.svm_virginica Metas.lr
    1:                    0                   0   setosa
    2:                    0                   0   setosa
    3:                    0                   0   setosa
    4:                    0                   0   setosa
    5:                    0                   0   setosa
    6:                    0                   0   setosa
    > 
    > mean(data.test$Species == data.test$Metas.knn)
    [1] 0.9722222
    > mean(data.test$Species == data.test$Metas.svm)
    [1] 0.9722222
    > mean(data.test$Species == data.test$Metas.lr)
    [1] 0.9722222
    > 
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126

    总结:本篇博客是介绍如何使用Stacking模型对鸢尾花数据进行分类,由于样本量较小的问题,在对测试集进行分类识别中三种分类方法预测的结果相同,不过没有关系相信大家在本篇博客中已经学到了Stacking模型的精髓。

  • 相关阅读:
    基于EQ36软件的地球化学反应过程模拟实践
    分类预测 | MATLAB实现1-DCNN一维卷积神经网络分类预测
    MIME type备忘
    PocSuite 工具使用介绍和sqlmap工具使用介绍
    安装及管理文件
    Playwright 组件测试入门
    ChatGPT企业版来了,速度翻倍,无使用限制
    使用vue router的步骤是什么,并举个例子?
    糟了,线上服务出现OOM了
    【JUC的三个⼯具类】CountDownLatch 、CyclicBarrier 、Semaphore_JUC17
  • 原文地址:https://blog.csdn.net/weixin_43217641/article/details/126296611