对于一个带权连通无向图G=(V,E),生成树不同,每棵树的权(树中所有边上的权值和)也不同,设R为G的所有生成树的集合,若T为R中权值和最小的生成树,则T称为G的最小生成树(Minimum-Spanning-Tree,MST)
注:
从某一个顶点(所以存在多个最小生成树)开始构建生成树,每次将代价最小的新顶点纳入生成树,直到所有顶点都纳入为止
实现代码:
#define SIZE 10
#define MAX_WEIGHT 65535
class Graph
{
public:
Graph();
~Graph();
void InsertVertex(char v);
void InsertEdge(char v1,char v2,int weight);
void PrintGraph();
int GetVertexIndex(char v); //获得顶点v在顶点数组的下标
void MST_Prim(char vertex); //
private:
int MaxVertex; //顶点的最大个数
int NumVertex; //顶点的实际个数
char *Vertex; //存储顶点的一维数组
//int **Edge;
int Edge[SIZE][SIZE]; //存储顶点边的信息
int NumEdge; //边的实际条数
};
//给图中的属性进行初始化
Graph::Graph()
{
MaxVertex = SIZE;
NumVertex = NumEdge = 0;
Vertex = new char[MaxVertex];
for(int i = 0;i<MaxVertex;i++)
{
for(int j = 0;j<MaxVertex;j++)
{
if(i == j)
Edge[i][j] = 0;
else
Edge[i][j] = MAX_WEIGHT;
}
}
}
Graph::~Graph()
{
if(Vertex != NULL)
{
delete []Vertex;
Vertex = NULL;
}
}
void Graph::InsertVertex(char v)
{
if(NumVertex >= MaxVertex)
return;
Vertex[NumVertex++] = v;
}
int Graph::GetVertexIndex(char v)
{
int i;
for(i = 0;i<NumVertex;i++)
{
if(v == Vertex[i])
return i;
}
return -1;
}
void Graph::InsertEdge(char v1,char v2,int weight)
{
int p1 = GetVertexIndex(v1);
int p2 = GetVertexIndex(v2);
if(p1 == -1 || p2 == -1)
return ;
//将p1和p2所对应的二维数组的值改为1,说明两个顶点有边
Edge[p1][p2] = Edge[p2][p1] = weight;
NumEdge++;
}
void Graph::PrintGraph()
{
int i,j;
cout<<" ";
for(i = 0;i<NumVertex;i++)
cout<<Vertex[i]<<" ";
cout<<endl;
for(i = 0;i<NumVertex;++i)
{
cout<<Vertex[i]<<" ";
for(j = 0;j<NumVertex;j++)
{
if(Edge[i][j] == MAX_WEIGHT)
cout<<"*"<<" ";
else
cout<<Edge[i][j]<<" ";
}
cout<<endl;
}
}
void Graph::MST_Prim(char vertex)
{
/*定义两个数组mst和lowcost,假设从顶点0开始则
lowcost[i] = 5表示从起始点0到顶点i的权值为5
mst[i]的值表示的是起始点,例如mst[5]=0,说明从起始点0到顶点5
*/
int *mst = new int[NumVertex];
int *lowcost = new int[NumVertex];
//对两个数组进行初始化,从vertex顶点开始
int k = GetVertexIndex(vertex);
int i,j;
for(i = 0;i<NumVertex;++i)
{
if(i == k)
lowcost[i] = 0;//说明从当前顶点开始,已被选中
else
{
mst[i] = k;
lowcost[i] = Edge[k][i];
}
}
//构建最小生成树,即是循环查找n-1条最小的边,并将每次找到的输出
int min,min_index;
int start,end;
for(i = 0;i<NumVertex-1;++i)
{
min = MAX_WEIGHT;
min_index = -1;
for(j = 0;j<NumVertex;j++)
{
if(lowcost[j] != 0 && lowcost[j] < min)
{
min = lowcost[j];
min_index = j; //记住最小值下标,即是终点,由此下标找到mst的值,即是起始点
}
}
start = mst[min_index];
end = min_index;
cout<<Vertex[start]<<"->"<<Vertex[end]<<":"<<min<<endl; //打印找到的当前最小边
lowcost[min_index] = 0; //置为0,说明已经被选
//更新,从当前选中的顶点min_index继续开始
for(j = 0;j<NumVertex;j++)
{
int cost = Edge[min_index][j];//从新的顶点到其余顶点的权值
if(cost < lowcost[j])//将新的权值和以前的进行比较,如果小就更新
{
lowcost[j] = cost;
mst[j] = min_index;
}
}
}
delete[]mst;
delete[]lowcost;
mst=NULL;
lowcost=NULL;
}
void main()
{
Graph g;
g.InsertVertex('a');
g.InsertVertex('b');
g.InsertVertex('c');
g.InsertVertex('d');
g.InsertVertex('e');
g.InsertVertex('f');
g.InsertEdge('a','b',6);
g.InsertEdge('a','c',1);
g.InsertEdge('a','d',5);
g.InsertEdge('b','c',5);
g.InsertEdge('b','e',3);
g.InsertEdge('c','d',5);
g.InsertEdge('c','e',6);
g.InsertEdge('c','f',4);
g.InsertEdge('d','f',2);
g.InsertEdge('e','f',6);
g.PrintGraph();
g.MST_Prim('a');
}