图形学中默认使用列向量
a
⃗
⋅
b
⃗
=
(
x
a
y
a
)
⋅
(
x
b
y
b
)
=
x
a
x
b
+
y
a
y
b
\vec{a} \cdot \vec{b}=\left(
a
⃗
⋅
b
⃗
=
(
x
a
y
a
z
a
)
⋅
(
x
b
y
b
z
b
)
=
x
a
x
b
+
y
a
y
b
+
z
a
z
b
\vec{a} \cdot \vec{b}=\left(


a
⃗
×
b
⃗
=
(
y
a
z
b
−
y
b
z
a
z
a
x
b
−
x
a
z
b
x
a
y
b
−
y
a
x
b
)
\vec{a} \times \vec{b}=\left(
a
⃗
×
b
⃗
=
A
∗
b
=
(
0
−
z
a
y
a
z
a
0
−
x
a
−
y
a
x
a
0
)
(
x
b
y
b
z
b
)
\vec{a} \times \vec{b}=A^{*} b=\left(

Any set of 3 vectors (in 3D) that
∥
u
⃗
∥
=
∥
v
⃗
∥
=
∥
w
⃗
∥
=
1
u
⃗
⋅
v
⃗
=
v
⃗
⋅
w
⃗
=
u
⃗
⋅
w
⃗
=
0
w
⃗
=
u
⃗
×
v
⃗
(right-handed)
p ⃗ = ( p ⃗ ⋅ u ⃗ ) u ⃗ + ( p ⃗ ⋅ v ⃗ ) v ⃗ + ( p ⃗ ⋅ w ⃗ ) w ⃗ \vec{p}=(\vec{p} \cdot \vec{u}) \vec{u}+(\vec{p} \cdot \vec{v}) \vec{v}+(\vec{p} \cdot \vec{w}) \vec{w} p=(p⋅u)u+(p⋅v)v+(p⋅w)w
矩阵乘法:需要算第几行第几列,就去找第几行第几列,把两个向量点乘起来
Element ( i , j ) (i, j) (i,j) in the product is the dot product of row i i i from A A A and column j j j from B B B
没有交换率
有以下规律
向量可以当作列矩阵
矩阵转置
(
1
2
3
4
5
6
)
T
=
(
1
3
5
2
4
6
)
\left(
单位矩阵
是一个对角阵,只有对角线上有非0元素
来定义矩阵的逆
I
3
×
3
=
(
1
0
0
0
1
0
0
0
1
)
I_{3 \times 3}=\left(
矩阵的逆
a
⃗
⋅
b
⃗
=
a
⃗
T
b
⃗
=
(
x
a
y
a
z
a
)
(
x
b
y
b
z
b
)
=
(
x
a
x
b
+
y
a
y
b
+
z
a
z
b
)
a
⃗
×
b
⃗
=
A
∗
b
=
(
0
−
z
a
y
a
z
a
0
−
x
a
−
y
a
x
a
0
)
(
x
b
y
b
z
b
)
\vec{a} \times \vec{b}=A^{*} b=\left(
PS: A ∗ A^* A∗ :dual matrix of vector a ⃗ \vec{a} a