• 学习自旋电子学的笔记07:根据微磁学基本能量密度公式推导有效场


    阅读说明:由于CSDN自带的Markdown编辑器目前对大篇幅KATEX公式的支持性不太好,导致文章内容有了字数限制,一旦超过字数限制,就不能正常保存和发布了。所以,我将笔记07的内容全部转换为了图片的形式,方便大家阅读!文末也有原始的.md文档,里面的公式使用的是KATEX格式,此外,若某些人没有合适的.md文档的阅读器,我也把本文打印了PDF版本,有需要的可以点击下载

    在这里插入图片描述

    在这里插入图片描述

    在这里插入图片描述

    在这里插入图片描述

    在这里插入图片描述

    在这里插入图片描述

    在这里插入图片描述

    在这里插入图片描述

    在这里插入图片描述

    在这里插入图片描述

    在这里插入图片描述

    在这里插入图片描述

    同理,可以根据结果的规律写出式子(2)的第二项:

    ∂ ∂ m x [ [ ( m x u 2 x + m y u 2 y + m z u 2 z ) ( m x u 3 x + m y u 3 y + m z u 3 z ) ] 2 ] \frac{\partial{}}{\partial{m_x}}[[(m_x u_{2x}+m_y u_{2y}+m_z u_{2z}) (m_x u_{3x}+m_y u_{3y}+m_z u_{3z})]^2] mx[[(mxu2x+myu2y+mzu2z)(mxu3x+myu3y+mzu3z)]2]

    = 2 [ ( m ⃗ ⋅ u 2 ⃗ ) ( m ⃗ ⋅ u 3 ⃗ ) 2 u 2 x + ( m ⃗ ⋅ u 2 ⃗ ) 2 ( m ⃗ ⋅ u 3 ⃗ ) u 3 x ] =2[(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})^2 u_{2x} +(\vec{m} \cdot \vec{u_2})^2 (\vec{m} \cdot \vec{u_3}) u_{3x}] =2[(m u2 )(m u3 )2u2x+(m u2 )2(m u3 )u3x]

    同理,可以根据结果的规律写出式子(2)的第三项:

    ∂ ∂ m x [ [ ( m x u 3 x + m y u 3 y + m z u 3 z ) ( m x u 1 x + m y u 1 y + m z u 1 z ) ] 2 ] \frac{\partial{}}{\partial{m_x}}[[(m_x u_{3x}+m_y u_{3y}+m_z u_{3z}) (m_x u_{1x}+m_y u_{1y}+m_z u_{1z})]^2] mx[[(mxu3x+myu3y+mzu3z)(mxu1x+myu1y+mzu1z)]2]

    = 2 [ ( m ⃗ ⋅ u 3 ⃗ ) ( m ⃗ ⋅ u 1 ⃗ ) 2 u 3 x + ( m ⃗ ⋅ u 3 ⃗ ) 2 ( m ⃗ ⋅ u 1 ⃗ ) u 1 x ] =2[(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})^2 u_{3x} +(\vec{m} \cdot \vec{u_3})^2 (\vec{m} \cdot \vec{u_1}) u_{1x}] =2[(m u3 )(m u1 )2u3x+(m u3 )2(m u1 )u1x]

    将以上三项带回式子(2)合并得到式子(2)的结果,即式子(1)的第一项:

    ∂ ∂ m x [ − K c [ [ ( m ⃗ ⋅ u 1 ⃗ ) ( m ⃗ ⋅ u 2 ⃗ ) ] 2 + [ ( m ⃗ ⋅ u 2 ⃗ ) ( m ⃗ ⋅ u 3 ⃗ ) ] 2 + [ ( m ⃗ ⋅ u 3 ⃗ ) ( m ⃗ ⋅ u 1 ⃗ ) ] 2 ] ] x ^ \frac{\partial{}}{\partial{m_x}}[-K_c [[(\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})]^2 +[(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})]^2 +[(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})]^2]]\hat{x} mx[Kc[[(m u1 )(m u2 )]2+[(m u2 )(m u3 )]2+[(m u3 )(m u1 )]2]]x^

    = − K c ( =-K_c \Bigg( =Kc(
    2 [ ( m ⃗ ⋅ u 1 ⃗ ) ( m ⃗ ⋅ u 2 ⃗ ) 2 u 1 x + ( m ⃗ ⋅ u 1 ⃗ ) 2 ( m ⃗ ⋅ u 2 ⃗ ) u 2 x ] + 2[(\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})^2 u_{1x} +(\vec{m} \cdot \vec{u_1})^2 (\vec{m} \cdot \vec{u_2}) u_{2x}]+ 2[(m u1 )(m u2 )2u1x+(m u1 )2(m u2 )u2x]+
    2 [ ( m ⃗ ⋅ u 2 ⃗ ) ( m ⃗ ⋅ u 3 ⃗ ) 2 u 2 x + ( m ⃗ ⋅ u 2 ⃗ ) 2 ( m ⃗ ⋅ u 3 ⃗ ) u 3 x ] + 2[(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})^2 u_{2x} +(\vec{m} \cdot \vec{u_2})^2 (\vec{m} \cdot \vec{u_3}) u_{3x}]+ 2[(m u2 )(m u3 )2u2x+(m u2 )2(m u3 )u3x]+
    2 [ ( m ⃗ ⋅ u 3 ⃗ ) ( m ⃗ ⋅ u 1 ⃗ ) 2 u 3 x + ( m ⃗ ⋅ u 3 ⃗ ) 2 ( m ⃗ ⋅ u 1 ⃗ ) u 1 x ] 2[(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})^2 u_{3x} +(\vec{m} \cdot \vec{u_3})^2 (\vec{m} \cdot \vec{u_1}) u_{1x}] 2[(m u3 )(m u1 )2u3x+(m u3 )2(m u1 )u1x]
    ) x ^ \Bigg)\hat{x} )x^

    同理,可以根据第一项结果的规律写出式子(1)的第二项:

    ∂ ∂ m y [ − K c [ [ ( m ⃗ ⋅ u 1 ⃗ ) ( m ⃗ ⋅ u 2 ⃗ ) ] 2 + [ ( m ⃗ ⋅ u 2 ⃗ ) ( m ⃗ ⋅ u 3 ⃗ ) ] 2 + [ ( m ⃗ ⋅ u 3 ⃗ ) ( m ⃗ ⋅ u 1 ⃗ ) ] 2 ] ] y ^ \frac{\partial{}}{\partial{m_y}}[-K_c [[(\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})]^2 +[(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})]^2 +[(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})]^2]]\hat{y} my[Kc[[(m u1 )(m u2 )]2+[(m u2 )(m u3 )]2+[(m u3 )(m u1 )]2]]y^

    = − K c ( =-K_c \Bigg( =Kc(
    2 [ ( m ⃗ ⋅ u 1 ⃗ ) ( m ⃗ ⋅ u 2 ⃗ ) 2 u 1 y + ( m ⃗ ⋅ u 1 ⃗ ) 2 ( m ⃗ ⋅ u 2 ⃗ ) u 2 y ] + 2[(\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})^2 u_{1y} +(\vec{m} \cdot \vec{u_1})^2 (\vec{m} \cdot \vec{u_2}) u_{2y}]+ 2[(m u1 )(m u2 )2u1y+(m u1 )2(m u2 )u2y]+
    2 [ ( m ⃗ ⋅ u 2 ⃗ ) ( m ⃗ ⋅ u 3 ⃗ ) 2 u 2 y + ( m ⃗ ⋅ u 2 ⃗ ) 2 ( m ⃗ ⋅ u 3 ⃗ ) u 3 y ] + 2[(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})^2 u_{2y} +(\vec{m} \cdot \vec{u_2})^2 (\vec{m} \cdot \vec{u_3}) u_{3y}]+ 2[(m u2 )(m u3 )2u2y+(m u2 )2(m u3 )u3y]+
    2 [ ( m ⃗ ⋅ u 3 ⃗ ) ( m ⃗ ⋅ u 1 ⃗ ) 2 u 3 y + ( m ⃗ ⋅ u 3 ⃗ ) 2 ( m ⃗ ⋅ u 1 ⃗ ) u 1 y ] 2[(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})^2 u_{3y} +(\vec{m} \cdot \vec{u_3})^2 (\vec{m} \cdot \vec{u_1}) u_{1y}] 2[(m u3 )(m u1 )2u3y+(m u3 )2(m u1 )u1y]
    ) y ^ \Bigg)\hat{y} )y^

    同理,可以根据第一项结果的规律写出式子(1)的第三项:

    ∂ ∂ m z [ − K c [ [ ( m ⃗ ⋅ u 1 ⃗ ) ( m ⃗ ⋅ u 2 ⃗ ) ] 2 + [ ( m ⃗ ⋅ u 2 ⃗ ) ( m ⃗ ⋅ u 3 ⃗ ) ] 2 + [ ( m ⃗ ⋅ u 3 ⃗ ) ( m ⃗ ⋅ u 1 ⃗ ) ] 2 ] ] z ^ \frac{\partial{}}{\partial{m_z}}[-K_c [[(\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})]^2 +[(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})]^2 +[(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})]^2]]\hat{z} mz[Kc[[(m u1 )(m u2 )]2+[(m u2 )(m u3 )]2+[(m u3 )(m u1 )]2]]z^

    = − K c ( =-K_c \Bigg( =Kc(
    2 [ ( m ⃗ ⋅ u 1 ⃗ ) ( m ⃗ ⋅ u 2 ⃗ ) 2 u 1 z + ( m ⃗ ⋅ u 1 ⃗ ) 2 ( m ⃗ ⋅ u 2 ⃗ ) u 2 z ] + 2[(\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})^2 u_{1z} +(\vec{m} \cdot \vec{u_1})^2 (\vec{m} \cdot \vec{u_2}) u_{2z}]+ 2[(m u1 )(m u2 )2u1z+(m u1 )2(m u2 )u2z]+
    2 [ ( m ⃗ ⋅ u 2 ⃗ ) ( m ⃗ ⋅ u 3 ⃗ ) 2 u 2 z + ( m ⃗ ⋅ u 2 ⃗ ) 2 ( m ⃗ ⋅ u 3 ⃗ ) u 3 z ] + 2[(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})^2 u_{2z} +(\vec{m} \cdot \vec{u_2})^2 (\vec{m} \cdot \vec{u_3}) u_{3z}]+ 2[(m u2 )(m u3 )2u2z+(m u2 )2(m u3 )u3z]+
    2 [ ( m ⃗ ⋅ u 3 ⃗ ) ( m ⃗ ⋅ u 1 ⃗ ) 2 u 3 z + ( m ⃗ ⋅ u 3 ⃗ ) 2 ( m ⃗ ⋅ u 1 ⃗ ) u 1 z ] 2[(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})^2 u_{3z} +(\vec{m} \cdot \vec{u_3})^2 (\vec{m} \cdot \vec{u_1}) u_{1z}] 2[(m u3 )(m u1 )2u3z+(m u3 )2(m u1 )u1z]
    ) z ^ \Bigg)\hat{z} )z^

    将以上三项带回式子(1)合并得到磁晶立方各向异性能的有效场: H c u b i c → \overrightarrow{H_{cubic}} Hcubic

    = − 2 K c − u 0 M s ( ( m ⃗ ⋅ u 1 ⃗ ) ( m ⃗ ⋅ u 2 ⃗ ) 2 ( u 1 x x ^ + u 1 y y ^ + u 1 z z ^ ) + ( m ⃗ ⋅ u 1 ⃗ ) 2 ( m ⃗ ⋅ u 2 ⃗ ) ( u 2 x x ^ + u 2 y y ^ + u 2 z z ^ ) =\frac{-2K_c}{{-u_{0}}{M_s}}\Bigg( (\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})^2(u_{1x}\hat{x} + u_{1y}\hat{y} + u_{1z}\hat{z}) +(\vec{m} \cdot \vec{u_1})^2 (\vec{m} \cdot \vec{u_2})(u_{2x}\hat{x} + u_{2y}\hat{y} + u_{2z}\hat{z}) =u0Ms2Kc((m u1 )(m u2 )2(u1xx^+u1yy^+u1zz^)+(m u1 )2(m u2 )(u2xx^+u2yy^+u2zz^)

    + ( m ⃗ ⋅ u 2 ⃗ ) ( m ⃗ ⋅ u 3 ⃗ ) 2 ( u 2 x x ^ + u 2 y y ^ + u 2 z z ^ ) + ( m ⃗ ⋅ u 2 ⃗ ) 2 ( m ⃗ ⋅ u 3 ⃗ ) ( u 3 x x ^ + u 3 y y ^ + u 3 z z ^ ) +(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})^2(u_{2x}\hat{x} + u_{2y}\hat{y} + u_{2z}\hat{z}) +(\vec{m} \cdot \vec{u_2})^2 (\vec{m} \cdot \vec{u_3})(u_{3x}\hat{x} + u_{3y}\hat{y} + u_{3z}\hat{z}) +(m u2 )(m u3 )2(u2xx^+u2yy^+u2zz^)+(m u2 )2(m u3 )(u3xx^+u3yy^+u3zz^)

    + ( m ⃗ ⋅ u 3 ⃗ ) ( m ⃗ ⋅ u 1 ⃗ ) 2 ( u 3 x x ^ + u 3 y y ^ + u 3 z z ^ ) + ( m ⃗ ⋅ u 3 ⃗ ) 2 ( m ⃗ ⋅ u 1 ⃗ ) ( u 1 x x ^ + u 1 y y ^ + u 1 z z ^ ) ) +(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})^2(u_{3x}\hat{x} + u_{3y}\hat{y} + u_{3z}\hat{z}) +(\vec{m} \cdot \vec{u_3})^2 (\vec{m} \cdot \vec{u_1})(u_{1x}\hat{x} + u_{1y}\hat{y} + u_{1z}\hat{z})\Bigg) +(m u3 )(m u1 )2(u3xx^+u3yy^+u3zz^)+(m u3 )2(m u1 )(u1xx^+u1yy^+u1zz^))

    = 2 K c u 0 M s ( ( m ⃗ ⋅ u 1 ⃗ ) ( m ⃗ ⋅ u 2 ⃗ ) 2 u 1 ⃗ + ( m ⃗ ⋅ u 1 ⃗ ) 2 ( m ⃗ ⋅ u 2 ⃗ ) u 2 ⃗ =\frac{2K_c}{{u_{0}}{M_s}}\Bigg( (\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})^2 \vec{u_1} +(\vec{m} \cdot \vec{u_1})^2 (\vec{m} \cdot \vec{u_2}) \vec{u_2} =u0Ms2Kc((m u1 )(m u2 )2u1 +(m u1 )2(m u2 )u2

    + ( m ⃗ ⋅ u 2 ⃗ ) ( m ⃗ ⋅ u 3 ⃗ ) 2 u 2 ⃗ + ( m ⃗ ⋅ u 2 ⃗ ) 2 ( m ⃗ ⋅ u 3 ⃗ ) u 3 ⃗ +(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})^2 \vec{u_2} +(\vec{m} \cdot \vec{u_2})^2 (\vec{m} \cdot \vec{u_3}) \vec{u_3} +(m u2 )(m u3 )2u2 +(m u2 )2(m u3 )u3

    + ( m ⃗ ⋅ u 3 ⃗ ) ( m ⃗ ⋅ u 1 ⃗ ) 2 u 2 ⃗ + ( m ⃗ ⋅ u 3 ⃗ ) 2 ( m ⃗ ⋅ u 1 ⃗ ) u 1 ⃗ ) +(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})^2 \vec{u_2} +(\vec{m} \cdot \vec{u_3})^2 (\vec{m} \cdot \vec{u_1}) \vec{u_1}\Bigg) +(m u3 )(m u1 )2u2 +(m u3 )2(m u1 )u1 )

    = 2 K c u 0 M s ( ( m ⃗ ⋅ u 1 ⃗ ) [ ( m ⃗ ⋅ u 2 ⃗ ) 2 + ( m ⃗ ⋅ u 3 ⃗ ) 2 ] u 1 ⃗ =\frac{2K_c}{{u_{0}}{M_s}}\Bigg( (\vec{m} \cdot \vec{u_1})[(\vec{m} \cdot \vec{u_2})^2 + (\vec{m} \cdot \vec{u_3})^2] \vec{u_1} =u0Ms2Kc((m u1 )[(m u2 )2+(m u3 )2]u1
    + ( m ⃗ ⋅ u 2 ⃗ ) [ ( m ⃗ ⋅ u 3 ⃗ ) 2 + ( m ⃗ ⋅ u 1 ⃗ ) 2 ] u 2 ⃗ +(\vec{m} \cdot \vec{u_2})[(\vec{m} \cdot \vec{u_3})^2 + (\vec{m} \cdot \vec{u_1})^2] \vec{u_2} +(m u2 )[(m u3 )2+(m u1 )2]u2
    + ( m ⃗ ⋅ u 3 ⃗ ) [ ( m ⃗ ⋅ u 1 ⃗ ) 2 + ( m ⃗ ⋅ u 2 ⃗ ) 2 ] u 3 ⃗ ) +(\vec{m} \cdot \vec{u_3})[(\vec{m} \cdot \vec{u_1})^2 + (\vec{m} \cdot \vec{u_2})^2] \vec{u_3} \Bigg) +(m u3 )[(m u1 )2+(m u2 )2]u3 )


    总结

    本文总结了微磁学中通过几个基本的能量密度公式推导出其有效场,内容核心就是求偏导,各种各样的偏导。至于微磁学中的其它公式推导,暂时还没学到皮毛,只有等以后再说了。

    以下内容是原始的.md文档

    
    @[TOC](文章目录)
    <font color=#ff0000 >
    雁来音信无凭,路遥归梦难成。李煜《清平乐别来春半》
    font>
    
    # 前言 在笔记06中为大家推荐了“ubermag”官网上的有关[微磁学公式的推导笔记](https://download.csdn.net/download/qq_43572058/86272578),按照老辈人的说法,微磁学相关公式的推导应该在我们入门后两个月内学会,但并不是每一个人都有着基本的数学素养,有的人面对这些数学式子就是头晕,比如我,,,好在近期闲来无事想着动纸笔比划一下,遇到的一些陌生的名词,陌生的导数,卡住的推导步骤等都会去网上翻一翻,于是总归学会了一点三脚猫的功夫了。 本文的内容就是根据几个微磁学基本能量密度公式来推导其有效场,这几个微磁学基本能量包括:交换能,塞曼能,界面DMI能,体DMI能,单轴各向异性能,立方各向异性能。这几个能量的能量密度公式是已知的,利用有效场的公式: $$\overrightarrow{H_{eff}} =\frac{1}{{-u_{0}}{M_s}}\frac{\delta{E_{any}}}{\delta{\overrightarrow{m}}} $$ 即可推导出每一项能量对应的有效场。式中:$u_0,M_s$ 分别表示真空磁导率和材料的饱和磁化强度;$\overrightarrow{m}=\overrightarrow{m(\vec{r})}=\frac{\overrightarrow{M(\vec{r})}}{M_s}$ 表示单位磁化强度(矢量场);$E_{any}$ 表示以上能量的能量密度(标量场);符号 $\delta$ 表示变分算子。 这里涉及到“变分”这个概念,我自己目前也不是很明白,但从网上查了一些言论描述如下: 设 $F=F(y),y=y(x)$,有所谓的 **函数的函数的导数** 表示为: $$F^{\prime}_y=\frac{\delta{F}}{\delta{y}}$$ 即 $$\frac{\delta{F}}{\delta{y}}=\frac{dF}{dy}或\frac{\partial{F}}{\partial{y}}$$ 于是,有效场的式子变为了能量密度(标量场)对单位磁化强度(矢量)求偏导: $$\overrightarrow{H_{eff}} =\frac{1}{{-u_{0}}{M_s}}\frac{\partial{E_{any}}}{\partial{\overrightarrow{m}}} $$ 大家对这个式子都非常熟悉了,在大部分微磁学文章中,一般这个式子会出现在LLG方程的后面。不过,此处又出现了有难度的步骤,即标量场如何对矢量场求偏导呢?其实结合“梯度”的定义来看: 设有一个标量场 $\phi=\phi(x,y,z)$,一个矢量线元 $d\vec{l}$ ,则定义 $\phi$ 的梯度为: $$grad\phi=\nabla{\phi}=\frac{d\phi}{d\vec{l}}=\frac{\partial{\phi}}{\partial{x}}\hat{x} + \frac{\partial{\phi}}{\partial{y}}\hat{y} + \frac{\partial{\phi}}{\partial{z}}\hat{z}$$ 梯度是一个标量场对矢量求导,从而不难得到“有效场等于能量密度对单位磁化强度的梯度”这个结论,这句话也经常出现在许多毕业论文第二章的开头,此时我才明白其中的含义。 于是借助梯度的概念将有效场的式子展开: $$\overrightarrow{H_{eff}}=\frac{1}{{-u_{0}}{M_s}}\nabla_{\vec{m}}{E_{any}}=\frac{1}{{-u_{0}}{M_s}}(\frac{\partial{E_{any}}}{\partial{m_x}}\hat{x} + \frac{\partial{E_{any}}}{\partial{m_y}}\hat{y} + \frac{\partial{E_{any}}}{\partial{m_z}}\hat{z})$$
    # 一、塞曼能的有效场 已知塞曼能的能量密度公式: $$E_{zeeman}={-u_{0}}{M_s}(\vec{m} \cdot \vec{H})$$ 其中:$\vec{H}=\overrightarrow{H(\vec{r})}$ 为外加磁场(矢量场),单位 A/m。那么可以得到塞曼能的有效场: $\overrightarrow{H_{zeeman}}$ $=\frac{1}{{-u_{0}}{M_s}}\frac{\delta{E_{zeeman}}}{\delta{\overrightarrow{m}}}$ $=\frac{1}{{-u_{0}}{M_s}}\frac{\partial{E_{zeeman}}}{\partial{\overrightarrow{m}}}$ $=\frac{1}{{-u_{0}}{M_s}}(\frac{\partial{E_{zeeman}}}{\partial{m_x}}\hat{x} + \frac{\partial{E_{zeeman}}}{\partial{m_y}}\hat{y} + \frac{\partial{E_{zeeman}}}{\partial{m_z}}\hat{z})$ $=\frac{1}{{-u_{0}}{M_s}}[\frac{\partial{}}{\partial{m_x}}({-u_{0}}{M_s}(\vec{m} \cdot \vec{H})) \hat{x} + \frac{\partial{}}{\partial{m_y}}({-u_{0}}{M_s}(\vec{m} \cdot \vec{H})) \hat{y} + \frac{\partial{}}{\partial{m_z}}({-u_{0}}{M_s}(\vec{m} \cdot \vec{H})) \hat{z})]$ $=\frac{\partial{}}{\partial{m_x}}(\vec{m} \cdot \vec{H}) \hat{x} + \frac{\partial{}}{\partial{m_y}}(\vec{m} \cdot \vec{H}) \hat{y} + \frac{\partial{}}{\partial{m_z}}(\vec{m} \cdot \vec{H}) \hat{z}$ ***********************************************(式子 1) 其中 $\vec{m}$ 和 $\vec{H}$ 的点乘: $\vec{m} \cdot \vec{H} = m_xH_x + m_yH_y + m_zH_z$ 带回式子(1)的第一项: $\frac{\partial{}}{\partial{m_x}}(\vec{m} \cdot \vec{H}) \hat{x}$ $=\frac{\partial{}}{\partial{m_x}}(m_xH_x + m_yH_y + m_zH_z) \hat{x}$ $=H_x \hat{x}$ 同理,式子(1)的第二项: $\frac{\partial{}}{\partial{m_y}}(\vec{m} \cdot \vec{H}) \hat{y}$ $=\frac{\partial{}}{\partial{m_y}}(m_xH_x + m_yH_y + m_zH_z) \hat{y}$ $=H_y \hat{y}$ 同理,式子(1)的第三项: $\frac{\partial{}}{\partial{m_z}}(\vec{m} \cdot \vec{H}) \hat{z}$ $=\frac{\partial{}}{\partial{m_z}}(m_xH_x + m_yH_y + m_zH_z) \hat{z}$ $=H_z \hat{z}$ 最后合并这三项,式子(1)的结果为: $\frac{\partial{}}{\partial{m_x}}(\vec{m} \cdot \vec{H}) \hat{x} + \frac{\partial{}}{\partial{m_y}}(\vec{m} \cdot \vec{H}) \hat{y} + \frac{\partial{}}{\partial{m_z}}(\vec{m} \cdot \vec{H}) \hat{z}$ $=H_x \hat{x} + H_y \hat{y} + H_z \hat{z}$ $=\vec{H}$ 这个推导结果表示塞曼能的有效场: $\overrightarrow{H_{zeeman}}$ 就等于外加磁场 $\vec{H}$。 而且由塞曼能的能量密度表达式可知,若已知任意微磁能量的有效场 $\overrightarrow{H^{any}_{eff}}$ 的情况下,那么它对应的能量密度表达式即为: $$E_{any}={-u_{0}}{M_s}(\vec{m} \cdot \overrightarrow{H^{any}_{eff}})$$ # 二、交换能的有效场 已知交换能的能量密度公式: $$E_{ex}=A[\vec{m} \cdot (\nabla^2{\vec{m}})] =A[(\nabla{m_x})^2 + (\nabla{m_y})^2 + (\nabla{m_z})^2]$$ 其中 $A$ 表示交换作用强度,单位 J/m,式中 $\nabla^2$ 是拉普拉斯算子,可以直接作用在标量场或者矢量场,此处作用在矢量场 $\vec{m}$ ,表示: $\nabla^2{\vec{m}}=\frac{\partial^2{m_{x}}}{\partial{x^2}}\hat{x} + \frac{\partial^2{m_{y}}}{\partial{y^2}}\hat{y} + \frac{\partial^2{m_{z}}}{\partial{z^2}}\hat{z}$ 。 交换能的能量密度公式还有一个简单的,特殊的“写法: $E_{ex}=A(\nabla{\vec{m}})^2$ ,之所以特殊,是因为我们都知道矢量微分算子 $\nabla$ 只能直接作用在标量场,而不能直接与矢量场结合(即只能通过点乘或叉乘的方式来与矢量场结合),同时这种简单的写法在许多文章中也是最流行的。 那么可以得到交换能的有效场:$\overrightarrow{H_{ex}}$ $=\frac{1}{{-u_{0}}{M_s}}\frac{\delta{E_{ex}}}{\delta{\overrightarrow{m}}}$ $=\frac{1}{{-u_{0}}{M_s}}\frac{\partial{E_{ex}}}{\partial{\overrightarrow{m}}}$ $=\frac{1}{{-u_{0}}{M_s}}(\frac{\partial{E_{ex}}}{\partial{m_x}}\hat{x} + \frac{\partial{E_{ex}}}{\partial{m_y}}\hat{y} + \frac{\partial{E_{ex}}}{\partial{m_z}}\hat{z})$ $=\frac{1}{{-u_{0}}{M_s}}[\frac{\partial{}}{\partial{m_x}}(A[(\nabla{m_x})^2 + (\nabla{m_y})^2 + (\nabla{m_z})^2])\hat{x} + \frac{\partial{}}{\partial{m_y}}(A[(\nabla{m_x})^2 + (\nabla{m_y})^2 + (\nabla{m_z})^2])\hat{y} + \frac{\partial{}}{\partial{m_z}}(A[(\nabla{m_z})^2 + (\nabla{m_y})^2 + (\nabla{m_z})^2])\hat{z}]$ ***********************************************(式子 1) 其中式子(1)的第一项: $\frac{\partial{}}{\partial{m_x}}(A[(\nabla{m_x})^2 + (\nabla{m_y})^2 + (\nabla{m_z})^2])$ ***********************************************(式子 2) 式子(2)里面的 $(\nabla{m_x})^2$ $=(\frac{\partial{m_{x}}}{\partial{x}}\hat{x} + \frac{\partial{m_{x}}}{\partial{y}}\hat{y} + \frac{\partial{m_{x}}}{\partial{z}}\hat{z})^2$ $=(\frac{\partial{m_{x}}}{\partial{x}})^2 + (\frac{\partial{m_{x}}}{\partial{y}})^2+ (\frac{\partial{m_{x}}}{\partial{z}})^2$ 式子(2)里面的 $(\nabla{m_y})^2$ $=(\frac{\partial{m_{y}}}{\partial{x}}\hat{x} + \frac{\partial{m_{y}}}{\partial{y}}\hat{y} + \frac{\partial{m_{y}}}{\partial{z}}\hat{z})^2$ $=(\frac{\partial{m_{y}}}{\partial{x}})^2 + (\frac{\partial{m_{y}}}{\partial{y}})^2+ (\frac{\partial{m_{z}}}{\partial{z}})^2$ 式子(2)里面的 $(\nabla{m_z})^2$ $=(\frac{\partial{m_{z}}}{\partial{x}}\hat{x} + \frac{\partial{m_{z}}}{\partial{y}}\hat{y} + \frac{\partial{m_{z}}}{\partial{z}}\hat{z})^2$ $=(\frac{\partial{m_{z}}}{\partial{x}})^2 + (\frac{\partial{m_{z}}}{\partial{y}})^2+ (\frac{\partial{m_{z}}}{\partial{z}})^2$ 从三个式子的展开结果来看,显然, $(\nabla{m_x})^2$ 与变量 $m_x$ 有关,与 $m_y$ 和 $m_z$ 无关; $(\nabla{m_y})^2$ 与变量 $m_y$ 有关,与 $m_x$ 和 $m_z$ 无关; $(\nabla{m_z})^2$ 与变量 $m_z$ 有关,与 $m_x$ 和 $m_y$ 无关。 于是从式子(2)可以得到:$\frac{\partial{}}{\partial{m_x}}(A[(\nabla{m_x})^2 + (\nabla{m_y})^2 + (\nabla{m_z})^2])$ $=\frac{\partial{}}{\partial{m_x}}(A(\nabla{m_x})^2) + 0 +0$ $=A \frac{\partial{}}{\partial{m_x}}(\nabla{m_x})^2$ $=A \frac{\partial{}}{\partial{m_x}} [(\frac{\partial{m_{x}}}{\partial{x}})^2 + (\frac{\partial{m_{x}}}{\partial{y}})^2+ (\frac{\partial{m_{x}}}{\partial{z}})^2]$ ***********************************************(式子 3) 式子(3)中 $\frac{\partial{}}{\partial{m_x}} [(\frac{\partial{m_{x}}}{\partial{x}})^2]$ $=2\frac{\partial{m_{x}}}{\partial{x}} \frac{\partial{}}{\partial{m_x}} (\frac{\partial{m_{x}}}{\partial{x}})$ $=2\frac{\partial{m_{x}}}{\partial{x}} \frac{\partial{}}{\cancel{\partial{m_x}}} (\frac{\cancel{\partial{m_x}}}{\partial{x}})$ $=2\frac{\partial{m_{x}}}{\partial{x}} \frac{\partial{}}{\partial{x}}$ 式子(3)中 $\frac{\partial{}}{\partial{m_x}} [(\frac{\partial{m_{x}}}{\partial{y}})^2]$ $=2\frac{\partial{m_{x}}}{\partial{y}} \frac{\partial{}}{\partial{m_x}} (\frac{\partial{m_{x}}}{\partial{y}})$ $=2\frac{\partial{m_{x}}}{\partial{y}} \frac{\partial{}}{\cancel{\partial{m_x}}} (\frac{\cancel{\partial{m_x}}}{\partial{y}})$ $=2\frac{\partial{m_{x}}}{\partial{y}} \frac{\partial{}}{\partial{y}}$ 式子(3)中 $\frac{\partial{}}{\partial{m_x}} [(\frac{\partial{m_{x}}}{\partial{z}})^2]$ $=2\frac{\partial{m_{x}}}{\partial{z}} \frac{\partial{}}{\partial{m_x}} (\frac{\partial{m_{x}}}{\partial{z}})$ $=2\frac{\partial{m_{x}}}{\partial{z}} \frac{\partial{}}{\cancel{\partial{m_x}}} (\frac{\cancel{\partial{m_x}}}{\partial{z}})$ $=2\frac{\partial{m_{x}}}{\partial{z}} \frac{\partial{}}{\partial{z}}$ 将式子(3)的结果带回式子(2)得到:$\frac{\partial{}}{\partial{m_x}}(A[(\nabla{m_x})^2 + (\nabla{m_y})^2 + (\nabla{m_z})^2])$ $=A \frac{\partial{}}{\partial{m_x}} [(\frac{\partial{m_{x}}}{\partial{x}})^2 + (\frac{\partial{m_{x}}}{\partial{y}})^2+ (\frac{\partial{m_{x}}}{\partial{z}})^2]$ $=A[2\frac{\partial{m_{x}}}{\partial{x}} \frac{\partial{}}{\partial{x}} + 2\frac{\partial{m_{x}}}{\partial{y}} \frac{\partial{}}{\partial{y}} + 2\frac{\partial{m_{x}}}{\partial{z}} \frac{\partial{}}{\partial{z}}]$ $=2A \nabla{} \cdot \nabla{m_x}$ $=2A \nabla^2{m_x}$ 同理,式子(1)的第二项:$\frac{\partial{}}{\partial{m_y}}(A[(\nabla{m_x})^2 + (\nabla{m_y})^2 + (\nabla{m_z})^2])$ $=A \frac{\partial{}}{\partial{m_y}} [(\frac{\partial{m_{y}}}{\partial{x}})^2 + (\frac{\partial{m_{y}}}{\partial{y}})^2+ (\frac{\partial{m_{y}}}{\partial{z}})^2]$ $=2A \nabla^2{m_y}$ 同理,式子(1)的第三项: $\frac{\partial{}}{\partial{m_z}}(A[(\nabla{m_x})^2 + (\nabla{m_y})^2 + (\nabla{m_z})^2])$ $=A \frac{\partial{}}{\partial{m_z}} [(\frac{\partial{m_{z}}}{\partial{x}})^2 + (\frac{\partial{m_{z}}}{\partial{y}})^2+ (\frac{\partial{m_{z}}}{\partial{z}})^2]$ $=2A \nabla^2{m_z}$ 将以上三项带回式子(1)合并得到交换能的有效场:$\overrightarrow{H_{ex}}$ $=\frac{1}{{-u_{0}}{M_s}}[\frac{\partial{}}{\partial{m_x}}(A[(\nabla{m_x})^2 + (\nabla{m_y})^2 + (\nabla{m_z})^2])\hat{x} + \frac{\partial{}}{\partial{m_y}}(A[(\nabla{m_x})^2 + (\nabla{m_y})^2 + (\nabla{m_z})^2])\hat{y} + \frac{\partial{}}{\partial{m_x}}(A[(\nabla{m_z})^2 + (\nabla{m_y})^2 + (\nabla{m_z})^2])\hat{z}]$ $=\frac{2A}{{-u_{0}}{M_s}} ( \nabla^2{m_x}\hat{x} + \nabla^2{m_y}\hat{y} + \nabla^2{m_z}\hat{z})$ $=\frac{2A}{{-u_{0}}{M_s}} \nabla^2{\vec{m}}$ # 三、界面DMI能的有效场 已知界面DMI能的能量密度公式: $$E^{inter}_{DMI}=D(\vec{m} \cdot \nabla{m_z} - m_z \nabla \cdot \vec{m}) =D(m_x \frac{\partial{m_z}}{\partial{x}} - m_z \frac{\partial{m_x}}{\partial{x}} + m_y \frac{\partial{m_z}}{\partial{y}} - m_z \frac{\partial{m_y}}{\partial{y}})$$ 其中 $D$ 是界面DMI强度,单位 $J/m^2$。那么可以得到界面DMI能的有效场: $\overrightarrow{H^{inter}_{DMI}}$ $=\frac{1}{{-u_{0}}{M_s}}\frac{\delta{E^{inter}_{DMI}}}{\delta{\overrightarrow{m}}}$ $=\frac{1}{{-u_{0}}{M_s}}\frac{\partial{E^{inter}_{DMI}}}{\partial{\overrightarrow{m}}}$ $=\frac{1}{{-u_{0}}{M_s}}(\frac{\partial{E^{inter}_{DMI}}}{\partial{m_x}}\hat{x} + \frac{\partial{E^{inter}_{DMI}}}{\partial{m_y}}\hat{y} + \frac{\partial{E^{inter}_{DMI}}}{\partial{m_z}}\hat{z})$ $=\frac{1}{{-u_{0}}{M_s}}(\frac{\partial{}}{\partial{m_x}}(D(m_x \frac{\partial{m_z}}{\partial{x}} - m_z \frac{\partial{m_x}}{\partial{x}} + m_y \frac{\partial{m_z}}{\partial{y}} - m_z \frac{\partial{m_y}}{\partial{y}}))\hat{x} + \frac{\partial{}}{\partial{m_y}}(D(m_x \frac{\partial{m_z}}{\partial{x}} - m_z \frac{\partial{m_x}}{\partial{x}} + m_y \frac{\partial{m_z}}{\partial{y}} - m_z \frac{\partial{m_y}}{\partial{y}}))\hat{y} + \frac{\partial{}}{\partial{m_z}}(D(m_x \frac{\partial{m_z}}{\partial{x}} - m_z \frac{\partial{m_x}}{\partial{x}} + m_y \frac{\partial{m_z}}{\partial{y}} - m_z \frac{\partial{m_y}}{\partial{y}}))\hat{z})$ ***********************************************(式子 1) 其中式子(1)的第一项: $\frac{\partial{}}{\partial{m_x}}(D(m_x \frac{\partial{m_z}}{\partial{x}} - m_z \frac{\partial{m_x}}{\partial{x}} + m_y \frac{\partial{m_z}}{\partial{y}} - m_z \frac{\partial{m_y}}{\partial{y}}))$ $=D[\frac{\partial{}}{\partial{m_x}}(m_x \frac{\partial{m_z}}{\partial{x}} ) -\frac{\partial{}}{\partial{m_x}}(m_z \frac{\partial{m_x}}{\partial{x}}) +\frac{\partial{}}{\partial{m_x}}(m_y \frac{\partial{m_z}}{\partial{y}}) -\frac{\partial{}}{\partial{m_x}}(m_z \frac{\partial{m_y}}{\partial{y}})$ $=D[\frac{\partial{m_z}}{\partial{x}} -m_z \frac{\partial{}}{\partial{x}} +0 -0]$ $=D[\frac{\partial{m_z}}{\partial{x}} -m_z \frac{\partial{}}{\partial{x}}]$ 其中式子(1)的第二项: $\frac{\partial{}}{\partial{m_y}}(D(m_x \frac{\partial{m_z}}{\partial{x}} - m_z \frac{\partial{m_x}}{\partial{x}} + m_y \frac{\partial{m_z}}{\partial{y}} - m_z \frac{\partial{m_y}}{\partial{y}}))$ $=D[\frac{\partial{}}{\partial{m_y}}(m_x \frac{\partial{m_z}}{\partial{x}} ) -\frac{\partial{}}{\partial{m_y}}(m_z \frac{\partial{m_x}}{\partial{x}}) +\frac{\partial{}}{\partial{m_y}}(m_y \frac{\partial{m_z}}{\partial{y}}) -\frac{\partial{}}{\partial{m_y}}(m_z \frac{\partial{m_y}}{\partial{y}})$ $=D[0 - 0 + \frac{\partial{m_z}}{\partial{y}} -m_z \frac{\partial{}}{\partial{y}}]$ $=D[\frac{\partial{m_z}}{\partial{y}} -m_z \frac{\partial{}}{\partial{y}}]$ 其中式子(1)的第三项: $\frac{\partial{}}{\partial{m_z}}(D(m_x \frac{\partial{m_z}}{\partial{x}} - m_z \frac{\partial{m_x}}{\partial{x}} + m_y \frac{\partial{m_z}}{\partial{y}} - m_z \frac{\partial{m_y}}{\partial{y}}))$ $=D[\frac{\partial{}}{\partial{m_z}}(m_x \frac{\partial{m_z}}{\partial{x}} ) -\frac{\partial{}}{\partial{m_z}}(m_z \frac{\partial{m_x}}{\partial{x}}) +\frac{\partial{}}{\partial{m_z}}(m_y \frac{\partial{m_z}}{\partial{y}}) -\frac{\partial{}}{\partial{m_z}}(m_z \frac{\partial{m_y}}{\partial{y}})$ $=D[m_x\frac{\partial{}}{\partial{x}} -\frac{\partial{m_x}}{\partial{x}} +m_y\frac{\partial{}}{\partial{y}} -\frac{\partial{m_y}}{\partial{y}}]$ 将以上三项带回式子(1)合并得到界面DMI能的有效场: $\overrightarrow{H^{inter}_{DMI}}$ $=\frac{1}{{-u_{0}}{M_s}} [D[\frac{\partial{m_z}}{\partial{x}} -m_z \frac{\partial{}}{\partial{x}}]\hat{x} +D[\frac{\partial{m_z}}{\partial{y}} -m_z \frac{\partial{}}{\partial{y}}]\hat{y} +D[m_x\frac{\partial{}}{\partial{x}} -\frac{\partial{m_x}}{\partial{x}} +m_y\frac{\partial{}}{\partial{y}} -\frac{\partial{m_y}}{\partial{y}}]\hat{z}]$ $=\frac{D}{{-u_{0}}{M_s}} [(\frac{\partial{m_z}}{\partial{x}}\hat{x} -m_z \frac{\partial{\hat{x}}}{\partial{x}}) +(\frac{\partial{m_z}}{\partial{y}}\hat{y} -m_z \frac{\partial{\hat{y}}}{\partial{y}}) +(m_x\frac{\partial{\hat{z}}}{\partial{x}} -\frac{\partial{m_x}}{\partial{x}}\hat{z} +m_y\frac{\partial{\hat{z}}}{\partial{y}} -\frac{\partial{m_y}}{\partial{y}}\hat{z})]$ $=\frac{D}{{-u_{0}}{M_s}} [(\frac{\partial{m_z}}{\partial{x}}\hat{x} -m_z \cdot 0) +(\frac{\partial{m_z}}{\partial{y}}\hat{y} -m_z \cdot 0) +(m_x \cdot 0 -\frac{\partial{m_x}}{\partial{x}}\hat{z} +m_y \cdot 0 -\frac{\partial{m_y}}{\partial{y}}\hat{z})]$ ********************************($\hat{x},\hat{y},\hat{z}$ 都是(方向)常矢量,它们的偏导数为0) $=\frac{D}{{-u_{0}}{M_s}} (\frac{\partial{m_z}}{\partial{x}}\hat{x} +\frac{\partial{m_z}}{\partial{y}}\hat{y} -\frac{\partial{m_x}}{\partial{x}}\hat{z} -\frac{\partial{m_y}}{\partial{y}}\hat{z})$ $=\frac{D}{{u_{0}}{M_s}}[(\nabla \cdot \vec{m})\hat{z} - \nabla{m_z}]$ # 四、体DMI能的有效场 已知体DMI能的能量密度公式: $$ E^{bulk}_{DMI}=D[\vec{m} \cdot (\nabla \times \vec{m})] $$ 首先展开 $\vec{m}$ 的旋度 $\nabla \times \vec{m}$ $=\begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \frac{\partial{}}{\partial{x}} & \frac{\partial{}}{\partial{y}} & \frac{\partial{}}{\partial{z}} \\ m_x & m_y & m_z \end{vmatrix}$ $=(\frac{\partial{m_z}}{\partial{y}} - \frac{\partial{m_y}}{\partial{z}}, \frac{\partial{m_x}}{\partial{z}} - \frac{\partial{m_z}}{\partial{x}}, \frac{\partial{m_y}}{\partial{x}} - \frac{\partial{m_x}}{\partial{y}})$ 带回原式得到: $$ E^{bulk}_{DMI}=D[\vec{m} \cdot (\nabla \times \vec{m})] =D[(m_x,m_y,m_z) \cdot (\frac{\partial{m_z}}{\partial{y}} - \frac{\partial{m_y}}{\partial{z}}, \frac{\partial{m_x}}{\partial{z}} - \frac{\partial{m_z}}{\partial{x}}, \frac{\partial{m_y}}{\partial{x}} - \frac{\partial{m_x}}{\partial{y}})] $$ $$ =D[m_x(\frac{\partial{m_z}}{\partial{y}} - \frac{\partial{m_y}}{\partial{z}}) +m_y(\frac{\partial{m_x}}{\partial{z}} - \frac{\partial{m_z}}{\partial{x}}) +m_z(\frac{\partial{m_y}}{\partial{x}} - \frac{\partial{m_x}}{\partial{y}})] $$ 其中 $D$ 是体DMI强度,单位 $J/m^2$(注意:==**体DMI和界面DMI单位相同**==)。那么可以得到体DMI能的有效场: $\overrightarrow{H^{bulk}_{DMI}}$ $=\frac{1}{{-u_{0}}{M_s}}\frac{\delta{E^{bulk}_{DMI}}}{\delta{\overrightarrow{m}}}$ $=\frac{1}{{-u_{0}}{M_s}}\frac{\partial{E^{bulk}_{DMI}}}{\partial{\overrightarrow{m}}}$ $=\frac{1}{{-u_{0}}{M_s}}(\frac{\partial{E^{bulk}_{DMI}}}{\partial{m_x}}\hat{x} + \frac{\partial{E^{bulk}_{DMI}}}{\partial{m_y}}\hat{y} + \frac{\partial{E^{bulk}_{DMI}}}{\partial{m_z}}\hat{z})$ $=\frac{1}{{-u_{0}}{M_s}}\Bigg( \frac{\partial{}}{\partial{m_x}}[D(m_x(\frac{\partial{m_z}}{\partial{y}} - \frac{\partial{m_y}}{\partial{z}})+m_y(\frac{\partial{m_x}}{\partial{z}} - \frac{\partial{m_z}}{\partial{x}})+m_z(\frac{\partial{m_y}}{\partial{x}} - \frac{\partial{m_x}}{\partial{y}})]\hat{x} +\frac{\partial{}}{\partial{m_y}}[D(m_x(\frac{\partial{m_z}}{\partial{y}} - \frac{\partial{m_y}}{\partial{z}})+m_y(\frac{\partial{m_x}}{\partial{z}} - \frac{\partial{m_z}}{\partial{x}})+m_z(\frac{\partial{m_y}}{\partial{x}} - \frac{\partial{m_x}}{\partial{y}})]\hat{y} +\frac{\partial{}}{\partial{m_z}}[D(m_x(\frac{\partial{m_z}}{\partial{y}} - \frac{\partial{m_y}}{\partial{z}})+m_y(\frac{\partial{m_x}}{\partial{z}} - \frac{\partial{m_z}}{\partial{x}})+m_z(\frac{\partial{m_y}}{\partial{x}} - \frac{\partial{m_x}}{\partial{y}})]\hat{z}\Bigg)$ ***********************************************(式子 1) 其中式子(1)的第一项: $\frac{\partial{}}{\partial{m_x}}[D(m_x(\frac{\partial{m_z}}{\partial{y}} - \frac{\partial{m_y}}{\partial{z}})+m_y(\frac{\partial{m_x}}{\partial{z}} - \frac{\partial{m_z}}{\partial{x}})+m_z(\frac{\partial{m_y}}{\partial{x}} - \frac{\partial{m_x}}{\partial{y}})]$ $=D[(\frac{\partial{m_z}}{\partial{y}} - \frac{\partial{m_y}}{\partial{z}})+m_y(\frac{\partial{}}{\partial{z}} - 0) +m_z(0- \frac{\partial{}}{\partial{y}})]$ $=D(\frac{\partial{m_z}}{\partial{y}} - \frac{\partial{m_y}}{\partial{z}}+m_y\frac{\partial{}}{\partial{z}} - m_z \frac{\partial{}}{\partial{y}})$ 其中式子(1)的第二项: $\frac{\partial{}}{\partial{m_y}}[D(m_x(\frac{\partial{m_z}}{\partial{y}} - \frac{\partial{m_y}}{\partial{z}})+m_y(\frac{\partial{m_x}}{\partial{z}} - \frac{\partial{m_z}}{\partial{x}})+m_z(\frac{\partial{m_y}}{\partial{x}} - \frac{\partial{m_x}}{\partial{y}})]$ $=D[m_x (0 - \frac{\partial{}}{\partial{z}})+(\frac{\partial{m_x}}{\partial{z}} - \frac{\partial{m_z}}{\partial{x}}) +m_z(\frac{\partial{}}{\partial{x}}-0)]$ $=D(-m_x \frac{\partial{}}{\partial{z}} + \frac{\partial{m_x}}{\partial{z}} - \frac{\partial{m_z}}{\partial{x}} + m_z \frac{\partial{}}{\partial{x}})$ 其中式子(1)的第三项: $\frac{\partial{}}{\partial{m_z}}[D(m_x(\frac{\partial{m_z}}{\partial{y}} - \frac{\partial{m_y}}{\partial{z}})+m_y(\frac{\partial{m_x}}{\partial{z}} - \frac{\partial{m_z}}{\partial{x}})+m_z(\frac{\partial{m_y}}{\partial{x}} - \frac{\partial{m_x}}{\partial{y}})]$ $=D[m_x(\frac{\partial{}}{\partial{y}} - 0)+m_y(0 - \frac{\partial{}}{\partial{x}}) +(\frac{\partial{m_y}}{\partial{x}}- \frac{\partial{m_x}}{\partial{y}})]$ $=D(m_x\frac{\partial{}}{\partial{y}} - m_y\frac{\partial{}}{\partial{x}}+\frac{\partial{m_y}}{\partial{x}} - \frac{\partial{m_x}}{\partial{y}})$ 将以上三项带回式子(1)合并得到体DMI能的有效场: $\overrightarrow{H^{bulk}_{DMI}}$ $=\frac{1}{{-u_{0}}{M_s}}\Bigg( D(\frac{\partial{m_z}}{\partial{y}} - \frac{\partial{m_y}}{\partial{z}}+m_y\frac{\partial{}}{\partial{z}} - m_z \frac{\partial{}}{\partial{y}})\hat{x} +D(-m_x \frac{\partial{}}{\partial{z}} + \frac{\partial{m_x}}{\partial{z}} - \frac{\partial{m_z}}{\partial{x}} + m_z \frac{\partial{}}{\partial{x}})\hat{y} +D(m_x\frac{\partial{}}{\partial{y}} - m_y\frac{\partial{}}{\partial{x}}+\frac{\partial{m_y}}{\partial{x}} - \frac{\partial{m_x}}{\partial{y}})\hat{z}\Bigg)$ $=\frac{D}{{-u_{0}}{M_s}}\Bigg( (\frac{\partial{m_z}}{\partial{y}}\hat{x} - \frac{\partial{m_y}}{\partial{z}}\hat{x}+m_y\frac{\partial{\hat{x}}}{\partial{z}} - m_z \frac{\partial{\hat{x}}}{\partial{y}}) +(-m_x \frac{\partial{\hat{y}}}{\partial{z}} + \frac{\partial{m_x}}{\partial{z}}\hat{y} - \frac{\partial{m_z}}{\partial{x}}\hat{y} + m_z \frac{\partial{\hat{y}}}{\partial{x}}) +(m_x\frac{\partial{\hat{z}}}{\partial{y}} - m_y\frac{\partial{\hat{z}}}{\partial{x}}+\frac{\partial{m_y}}{\partial{x}}\hat{z} - \frac{\partial{m_x}}{\partial{y}}\hat{z})\Bigg)$ ********************************($\hat{x},\hat{y},\hat{z}$ 都是(方向)常矢量,它们的偏导数为0) $=\frac{D}{{-u_{0}}{M_s}}\Bigg( (\frac{\partial{m_z}}{\partial{y}}\hat{x} - \frac{\partial{m_y}}{\partial{z}}\hat{x}+ 0 - 0) +(- 0+ \frac{\partial{m_x}}{\partial{z}}\hat{y} - \frac{\partial{m_z}}{\partial{x}}\hat{y} + 0) +(0 - 0+\frac{\partial{m_y}}{\partial{x}}\hat{z} - \frac{\partial{m_x}}{\partial{y}}\hat{z})\Bigg)$ $=\frac{D}{{-u_{0}}{M_s}}[ (\frac{\partial{m_z}}{\partial{y}} - \frac{\partial{m_y}}{\partial{z}})\hat{x} +(\frac{\partial{m_x}}{\partial{z}} - \frac{\partial{m_z}}{\partial{x}})\hat{y} +(\frac{\partial{m_y}}{\partial{x}}\hat{z} - \frac{\partial{m_x}}{\partial{y}})\hat{z}]$ $=\frac{D}{{-u_{0}}{M_s}}(\nabla \times \vec{m})$ # 五、磁晶单轴各向异性能的有效场 已知磁晶单轴各向异性能的能量密度公式: $$ E_{uniaxial}=-K_u (\vec{m} \cdot \vec{u})^2 或 E_{uniaxial}=-K_1 (\vec{m} \cdot \vec{u})^2 -K_2 (\vec{m} \cdot \vec{u})^2 (高阶形式) $$ 其中 $\vec{u}$ 是磁晶易轴方向(单位矢量), $K_u$ 是磁晶单轴各向异性常数,单位 $J/m^3$。那么可以得到磁晶单轴各向异性能的有效场: $\overrightarrow{H_{uniaxial}}$ $=\frac{1}{{-u_{0}}{M_s}}\frac{\delta{E_{uniaxial}}}{\delta{\overrightarrow{m}}}$ $=\frac{1}{{-u_{0}}{M_s}}\frac{\partial{E_{uniaxial}}}{\partial{\overrightarrow{m}}}$ $=\frac{1}{{-u_{0}}{M_s}}(\frac{\partial{E_{uniaxial}}}{\partial{m_x}}\hat{x} + \frac{\partial{E_{uniaxial}}}{\partial{m_y}}\hat{y} + \frac{\partial{E_{uniaxial}}}{\partial{m_z}}\hat{z})$ 此处和推导塞曼能的有效场的步骤相同,将 $(\vec{m} \cdot \vec{u})$ 展开为 $m_x u_x+m_y u_y+m_z u_z$ 方便我们求导,带回上式: $=\frac{1}{{-u_{0}}{M_s}}\Bigg(\frac{\partial{}}{\partial{m_x}}[-K_u(m_x u_x+m_y u_y+m_z u_z)^2]\hat{x} +\frac{\partial{}}{\partial{m_y}}[-K_u(m_x u_x+m_y u_y+m_z u_z)^2]\hat{y} +\frac{\partial{}}{\partial{m_z}}[-K_u(m_x u_x+m_y u_y+m_z u_z)^2]\hat{z}\Bigg)$ ***********************************************(式子 1) 其中式子(1)的第一项: $\frac{\partial{}}{\partial{m_x}}[-K_u(m_x u_x+m_y u_y+m_z u_z)^2]$ $=-2K_u[(m_x u_x+m_y u_y+m_z u_z)][u_x + 0 + 0]$ $=-2K_u(\vec{m} \cdot \vec{u}) u_x$ 其中式子(1)的第二项: $\frac{\partial{}}{\partial{m_y}}[-K_u(m_x u_x+m_y u_y+m_z u_z)^2]$ $=-2K_u[(m_x u_x+m_y u_y+m_z u_z)][0 + u_y + 0]$ $=-2K_u(\vec{m} \cdot \vec{u}) u_y$ 其中式子(1)的第三项: $\frac{\partial{}}{\partial{m_z}}[-K_u(m_x u_x+m_y u_y+m_z u_z)^2]$ $=-2K_u[(m_x u_x+m_y u_y+m_z u_z)][0 + 0 + u_z]$ $=-2K_u(\vec{m} \cdot \vec{u}) u_z$ 将以上三项带回式子(1)合并得到磁晶单轴各向异性能的有效场: $\overrightarrow{H_{uniaxial}}$ $=\frac{1}{{-u_{0}}{M_s}}\Bigg(-2K_u(\vec{m} \cdot \vec{u}) u_x \hat{x} -2K_u(\vec{m} \cdot \vec{u}) u_y \hat{y} -2K_u(\vec{m} \cdot \vec{u}) u_y \hat{z}\Bigg)$ $=\frac{-2K_u}{{-u_{0}}{M_s}}(\vec{m} \cdot \vec{u}) (u_x \hat{x} +u_y \hat{y} -u_y \hat{z})$ $=\frac{2K_u}{{u_{0}}{M_s}}(\vec{m} \cdot \vec{u}) \vec{u}$ # 六、磁晶立方各向异性能的有效场 已知磁晶立方各向异性能的能量密度公式: $$ E_{cubic}=-K_c [(\vec{m} \cdot \vec{u_1})^2 (\vec{m} \cdot \vec{u_2})^2 +(\vec{m} \cdot \vec{u_2})^2 (\vec{m} \cdot \vec{u_3})^2 +(\vec{m} \cdot \vec{u_3})^2 (\vec{m} \cdot \vec{u_1})^2] $$ 其中 $\vec{u_1},\vec{u_2},\vec{u_3}$ 是磁晶易轴方向(单位矢量),而且 $\vec{u_3}$ 是通过 $\vec{u_1},\vec{u_2}$ 的叉乘确定的:$\vec{u_3} = \vec{u_1} \times \vec{u_2}$ 。$K_c$ 是磁晶立方各向异性常数,单位 $J/m^3$。那么可以得到磁晶立方各向异性能的有效场: $\overrightarrow{H_{cubic}}$ $=\frac{1}{{-u_{0}}{M_s}}\frac{\delta{E_{cubic}}}{\delta{\overrightarrow{m}}}$ $=\frac{1}{{-u_{0}}{M_s}}\frac{\partial{E_{cubic}}}{\partial{\overrightarrow{m}}}$ $=\frac{1}{{-u_{0}}{M_s}}(\frac{\partial{E_{cubic}}}{\partial{m_x}}\hat{x} + \frac{\partial{E_{cubic}}}{\partial{m_y}}\hat{y} + \frac{\partial{E_{cubic}}}{\partial{m_z}}\hat{z})$ $=\frac{1}{{-u_{0}}{M_s}}\Bigg( \frac{\partial{}}{\partial{m_x}}[-K_c [(\vec{m} \cdot \vec{u_1})^2 (\vec{m} \cdot \vec{u_2})^2 +(\vec{m} \cdot \vec{u_2})^2 (\vec{m} \cdot \vec{u_3})^2 +(\vec{m} \cdot \vec{u_3})^2 (\vec{m} \cdot \vec{u_1})^2]]\hat{x}$ $+\frac{\partial{}}{\partial{m_y}}[-K_c [(\vec{m} \cdot \vec{u_1})^2 (\vec{m} \cdot \vec{u_2})^2 +(\vec{m} \cdot \vec{u_2})^2 (\vec{m} \cdot \vec{u_3})^2 +(\vec{m} \cdot \vec{u_3})^2 (\vec{m} \cdot \vec{u_1})^2]]\hat{y}$ $+\frac{\partial{}}{\partial{m_z}}[-K_c [(\vec{m} \cdot \vec{u_1})^2 (\vec{m} \cdot \vec{u_2})^2 +(\vec{m} \cdot \vec{u_2})^2 (\vec{m} \cdot \vec{u_3})^2 +(\vec{m} \cdot \vec{u_3})^2 (\vec{m} \cdot \vec{u_1})^2]]\hat{z}\Bigg)$ $=\frac{1}{{-u_{0}}{M_s}}\Bigg( \frac{\partial{}}{\partial{m_x}}[-K_c [[(\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})]^2 +[(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})]^2 +[(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})]^2]]\hat{x}$ $+\frac{\partial{}}{\partial{m_y}}[-K_c [[(\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})]^2 +[(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})]^2 +[(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})]^2]]\hat{y}$ $+\frac{\partial{}}{\partial{m_z}}[-K_c [[(\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})]^2 +[(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})]^2 +[(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})]^2]]\hat{z}\Bigg)$ ***********************************************(式子 1) 此处和推导磁晶单轴各向异性能的有效场的步骤相同,将 $(\vec{m} \cdot \vec{u_{n}})$ 展开为 $m_x u_{nx}+m_y u_{ny}+m_z u_{nz}$ 方便我们求导,带回上式,计算式子(1)的第一项: $\frac{\partial{}}{\partial{m_x}}[-K_c [[(\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})]^2 +[(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})]^2 +[(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})]^2]]$ $=-K_c\frac{\partial{}}{\partial{m_x}}\Bigg([(m_x u_{1x}+m_y u_{1y}+m_z u_{1z}) (m_x u_{2x}+m_y u_{2y}+m_z u_{2z})]^2$ $+[(m_x u_{2x}+m_y u_{2y}+m_z u_{2z}) (m_x u_{3x}+m_y u_{3y}+m_z u_{3z})]^2$ $+[(m_x u_{3x}+m_y u_{3y}+m_z u_{3z}) (m_x u_{1x}+m_y u_{1y}+m_z u_{1z})]^2\Bigg)$ ***********************************************(式子 2) 对于式子(2)的第一项,可以利用复合函数的求导法则($(uv)^{\prime}=u^{\prime}v + uv^{\prime}$)来简化计算,于是: $\frac{\partial{}}{\partial{m_x}}[(m_x u_{1x}+m_y u_{1y}+m_z u_{1z}) (m_x u_{2x}+m_y u_{2y}+m_z u_{2z})]^2]$ $=2[(m_x u_{1x}+m_y u_{1y}+m_z u_{1z}) (m_x u_{2x}+m_y u_{2y}+m_z u_{2z})] \Bigg( (u_{1x}+0+0) (m_x u_{2x}+m_y u_{2y}+m_z u_{2z}) +(m_x u_{1x}+m_y u_{1y}+m_z u_{1z}) (u_{2x}+0 +0)$ $=2[(m_x u_{1x}+m_y u_{1y}+m_z u_{1z}) (m_x u_{2x}+m_y u_{2y}+m_z u_{2z})] \Bigg( u_{1x} (m_x u_{2x}+m_y u_{2y}+m_z u_{2z}) +(m_x u_{1x}+m_y u_{1y}+m_z u_{1z}) u_{2x}\Bigg)$ $=2[(\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})^2 u_{1x} +(\vec{m} \cdot \vec{u_1})^2 (\vec{m} \cdot \vec{u_2}) u_{2x}]$ 同理,可以根据结果的规律写出式子(2)的第二项: $\frac{\partial{}}{\partial{m_x}}[[(m_x u_{2x}+m_y u_{2y}+m_z u_{2z}) (m_x u_{3x}+m_y u_{3y}+m_z u_{3z})]^2]$ $=2[(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})^2 u_{2x} +(\vec{m} \cdot \vec{u_2})^2 (\vec{m} \cdot \vec{u_3}) u_{3x}]$ 同理,可以根据结果的规律写出式子(2)的第三项: $\frac{\partial{}}{\partial{m_x}}[[(m_x u_{3x}+m_y u_{3y}+m_z u_{3z}) (m_x u_{1x}+m_y u_{1y}+m_z u_{1z})]^2]$ $=2[(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})^2 u_{3x} +(\vec{m} \cdot \vec{u_3})^2 (\vec{m} \cdot \vec{u_1}) u_{1x}]$ 将以上三项带回式子(2)合并得到式子(2)的结果,即式子(1)的第一项: $\frac{\partial{}}{\partial{m_x}}[-K_c [[(\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})]^2 +[(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})]^2 +[(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})]^2]]\hat{x}$ $=-K_c \Bigg($ $2[(\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})^2 u_{1x} +(\vec{m} \cdot \vec{u_1})^2 (\vec{m} \cdot \vec{u_2}) u_{2x}]+$ $2[(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})^2 u_{2x} +(\vec{m} \cdot \vec{u_2})^2 (\vec{m} \cdot \vec{u_3}) u_{3x}]+$ $2[(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})^2 u_{3x} +(\vec{m} \cdot \vec{u_3})^2 (\vec{m} \cdot \vec{u_1}) u_{1x}]$ $\Bigg)\hat{x}$ 同理,可以根据第一项结果的规律写出式子(1)的第二项: $\frac{\partial{}}{\partial{m_y}}[-K_c [[(\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})]^2 +[(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})]^2 +[(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})]^2]]\hat{y}$ $=-K_c \Bigg($ $2[(\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})^2 u_{1y} +(\vec{m} \cdot \vec{u_1})^2 (\vec{m} \cdot \vec{u_2}) u_{2y}]+$ $2[(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})^2 u_{2y} +(\vec{m} \cdot \vec{u_2})^2 (\vec{m} \cdot \vec{u_3}) u_{3y}]+$ $2[(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})^2 u_{3y} +(\vec{m} \cdot \vec{u_3})^2 (\vec{m} \cdot \vec{u_1}) u_{1y}]$ $\Bigg)\hat{y}$ 同理,可以根据第一项结果的规律写出式子(1)的第三项: $\frac{\partial{}}{\partial{m_z}}[-K_c [[(\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})]^2 +[(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})]^2 +[(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})]^2]]\hat{z}$ $=-K_c \Bigg($ $2[(\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})^2 u_{1z} +(\vec{m} \cdot \vec{u_1})^2 (\vec{m} \cdot \vec{u_2}) u_{2z}]+$ $2[(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})^2 u_{2z} +(\vec{m} \cdot \vec{u_2})^2 (\vec{m} \cdot \vec{u_3}) u_{3z}]+$ $2[(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})^2 u_{3z} +(\vec{m} \cdot \vec{u_3})^2 (\vec{m} \cdot \vec{u_1}) u_{1z}]$ $\Bigg)\hat{z}$ 将以上三项带回式子(1)合并得到磁晶立方各向异性能的有效场: $\overrightarrow{H_{cubic}}$: $=\frac{-2K_c}{{-u_{0}}{M_s}}\Bigg( (\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})^2(u_{1x}\hat{x} + u_{1y}\hat{y} + u_{1z}\hat{z}) +(\vec{m} \cdot \vec{u_1})^2 (\vec{m} \cdot \vec{u_2})(u_{2x}\hat{x} + u_{2y}\hat{y} + u_{2z}\hat{z})$ $+(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})^2(u_{2x}\hat{x} + u_{2y}\hat{y} + u_{2z}\hat{z}) +(\vec{m} \cdot \vec{u_2})^2 (\vec{m} \cdot \vec{u_3})(u_{3x}\hat{x} + u_{3y}\hat{y} + u_{3z}\hat{z})$ $+(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})^2(u_{3x}\hat{x} + u_{3y}\hat{y} + u_{3z}\hat{z}) +(\vec{m} \cdot \vec{u_3})^2 (\vec{m} \cdot \vec{u_1})(u_{1x}\hat{x} + u_{1y}\hat{y} + u_{1z}\hat{z})\Bigg)$ $=\frac{2K_c}{{u_{0}}{M_s}}\Bigg( (\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})^2 \vec{u_1} +(\vec{m} \cdot \vec{u_1})^2 (\vec{m} \cdot \vec{u_2}) \vec{u_2}$ $+(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})^2 \vec{u_2} +(\vec{m} \cdot \vec{u_2})^2 (\vec{m} \cdot \vec{u_3}) \vec{u_3}$ $+(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})^2 \vec{u_2} +(\vec{m} \cdot \vec{u_3})^2 (\vec{m} \cdot \vec{u_1}) \vec{u_1}\Bigg)$ $=\frac{2K_c}{{u_{0}}{M_s}}\Bigg( (\vec{m} \cdot \vec{u_1})[(\vec{m} \cdot \vec{u_2})^2 + (\vec{m} \cdot \vec{u_3})^2] \vec{u_1}$ $+(\vec{m} \cdot \vec{u_2})[(\vec{m} \cdot \vec{u_3})^2 + (\vec{m} \cdot \vec{u_1})^2] \vec{u_2}$ $+(\vec{m} \cdot \vec{u_3})[(\vec{m} \cdot \vec{u_1})^2 + (\vec{m} \cdot \vec{u_2})^2] \vec{u_3} \Bigg)$
    # 总结 <font color=#999AAA > 本文总结了微磁学中通过几个基本的能量密度公式推导出其有效场,内容核心就是求偏导,各种各样的偏导。至于微磁学中的其它公式推导,暂时还没学到皮毛,只有等以后再说了。
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
    • 210
    • 211
    • 212
    • 213
    • 214
    • 215
    • 216
    • 217
    • 218
    • 219
    • 220
    • 221
    • 222
    • 223
    • 224
    • 225
    • 226
    • 227
    • 228
    • 229
    • 230
    • 231
    • 232
    • 233
    • 234
    • 235
    • 236
    • 237
    • 238
    • 239
    • 240
    • 241
    • 242
    • 243
    • 244
    • 245
    • 246
    • 247
    • 248
    • 249
    • 250
    • 251
    • 252
    • 253
    • 254
    • 255
    • 256
    • 257
    • 258
    • 259
    • 260
    • 261
    • 262
    • 263
    • 264
    • 265
    • 266
    • 267
    • 268
    • 269
    • 270
    • 271
    • 272
    • 273
    • 274
    • 275
    • 276
    • 277
    • 278
    • 279
    • 280
    • 281
    • 282
    • 283
    • 284
    • 285
    • 286
    • 287
    • 288
    • 289
    • 290
    • 291
    • 292
    • 293
    • 294
    • 295
    • 296
    • 297
    • 298
    • 299
    • 300
    • 301
    • 302
    • 303
    • 304
    • 305
    • 306
    • 307
    • 308
    • 309
    • 310
    • 311
    • 312
    • 313
    • 314
    • 315
    • 316
    • 317
    • 318
    • 319
    • 320
    • 321
    • 322
    • 323
    • 324
    • 325
    • 326
    • 327
    • 328
    • 329
    • 330
    • 331
    • 332
    • 333
    • 334
    • 335
    • 336
    • 337
    • 338
    • 339
    • 340
    • 341
    • 342
    • 343
    • 344
    • 345
    • 346
    • 347
    • 348
    • 349
    • 350
    • 351
    • 352
    • 353
    • 354
    • 355
    • 356
    • 357
    • 358
    • 359
    • 360
    • 361
    • 362
    • 363
    • 364
    • 365
    • 366
    • 367
    • 368
    • 369
    • 370
    • 371
    • 372
    • 373
    • 374
    • 375
    • 376
    • 377
    • 378
    • 379
    • 380
    • 381
    • 382
    • 383
    • 384
    • 385
    • 386
    • 387
    • 388
    • 389
    • 390
    • 391
    • 392
    • 393
    • 394
    • 395
    • 396
    • 397
    • 398
    • 399
    • 400
    • 401
    • 402
    • 403
    • 404
    • 405
    • 406
    • 407
    • 408
    • 409
    • 410
    • 411
    • 412
    • 413
    • 414
    • 415
    • 416
    • 417
    • 418
    • 419
    • 420
    • 421
    • 422
    • 423
    • 424
    • 425
    • 426
    • 427
    • 428
    • 429
    • 430
    • 431
    • 432
    • 433
    • 434
    • 435
    • 436
    • 437
    • 438
    • 439
    • 440
    • 441
    • 442
    • 443
    • 444
    • 445
    • 446
    • 447
    • 448
    • 449
    • 450
    • 451
    • 452
    • 453
    • 454
    • 455
    • 456
    • 457
    • 458
    • 459
    • 460
    • 461
    • 462
    • 463
    • 464
    • 465
    • 466
    • 467
    • 468
    • 469
    • 470
    • 471
    • 472
    • 473
    • 474
    • 475
    • 476
    • 477
    • 478
    • 479
    • 480
    • 481
    • 482
    • 483
    • 484
    • 485
    • 486
    • 487
    • 488
    • 489
    • 490
    • 491
    • 492
    • 493
    • 494
    • 495
    • 496
    • 497
    • 498
    • 499
    • 500
    • 501
    • 502
    • 503
    • 504
    • 505
    • 506
    • 507
    • 508
    • 509
    • 510
    • 511
    • 512
    • 513
    • 514
    • 515
    • 516
    • 517
    • 518
    • 519
    • 520
    • 521
    • 522
    • 523
    • 524
    • 525
    • 526
    • 527
    • 528
    • 529
    • 530
    • 531
    • 532
    • 533
    • 534
    • 535
    • 536
    • 537
    • 538
    • 539
    • 540
    • 541
    • 542
    • 543
    • 544
    • 545
    • 546
    • 547
    • 548
    • 549
    • 550
    • 551
    • 552
    • 553
    • 554
    • 555
    • 556
    • 557
    • 558
    • 559
    • 560
    • 561
    • 562
    • 563
    • 564
    • 565
    • 566
    • 567
    • 568
    • 569
    • 570
    • 571
    • 572
    • 573
    • 574
    • 575
    • 576
    • 577
    • 578
    • 579
    • 580
    • 581
    • 582
    • 583
    • 584
    • 585
    • 586
    • 587
    • 588
    • 589
    • 590
    • 591
    • 592
    • 593
    • 594
    • 595
    • 596
    • 597
    • 598
    • 599
  • 相关阅读:
    最新的Cesium和Three的整合方法(附完整代码)
    Java多线程并发面试题
    Terminator终端
    【网络技术】【Kali Linux】Wireshark嗅探(十一)以太网Ethernet协议报文捕获及分析
    项目沟通管理
    React基础知识大汇总
    修复表中的名字(首字符大写,其他小写)
    Go 接口
    基于JavaSwing开发自选拼图游戏 课程设计 大作业
    商业打假系列之第一百之--无聊的制度和管理流程真的可以扔进垃圾桶-顺便分析十几个无用的Unity游戏自检项目
  • 原文地址:https://blog.csdn.net/qq_43572058/article/details/126234976