
人工神经网络(artificialneuralnetwork,ANN)指由大量与自然神经系统相类似的神经元联结而成的网络,是用工程技术手段模拟生物网络结构特征和功能特征的一类人工系统。
神经网络不但具有处理数值数据的一般计算能力,而且还具有处理知识的思维、学习、记忆能力,它采用类似于“黑箱”的方法,通过学习和记忆,找出输入、输出变量之间的非线性关系(映射),在执行问题和求解时,将所获取的数据输入到已经训练好的网络,依据网络学到的知识进行网络推理,得出合理的答案与结果。
岩土工程中的许多问题是非线性问题,变量之间的关系十分复杂,很难用确切的数学、力学模型来描述。
工程现场实测数据的代表性与测点的位置、范围和手段有关,有时很难满足传统统计方法所要求的统计条件和规律,加之岩土工程信息的复杂性和不确定性,因而运用神经网络方法实现岩土工程问题的求解是合适的。
BP神经网络模型是误差反向传播(BackPagation)网络模型的简称。它由输入层、隐含层和输出层组成。
网络的学习过程就是对网络各层节点间连接权逐步修改的过程,这一过程由两部分组成:正向传播和反向传播。
正向传播是输入模式从输入层经隐含层处理传向输出层;反向传播是均方误差信息从输出层向输入层传播,将误差信号沿原来的连接通路返回,通过修改各层神经元的权值,使得误差信号最小。
BP神经网络模型在建立及应用过程中,主要存在的不足和建议有以下四个方面:(1)对于神经网络,数据愈多,网络的训练效果愈佳,也更能反映实际。
但在实际操作中,由于条件的限制很难选取大量的样本值进行训练,样本数量偏少。(2)BP网络模型其计算速度较慢、无法表达预测量与其相关参数之间亲疏关系。
(3)以定量数据为基础建立模型,若能收集到充分资料,以定性指标(如基坑降水方式、基坑支护模式、施工工况等)和一些易获取的定量指标作为输入层,以评价等级作为输出层,这样建立的BP网络模型将更准确全面。
(4)BP人工神经网络系统具有非线性、智能的特点。
较好地考虑了定性描述和定量计算、精确逻辑分析和非确定性推理等方面,但由于样本不同,影响要素的权重不同,以及在根据先验知识和前人的经验总结对定性参数进行量化处理,必然会影响评价的客观性和准确性。
因此,在实际评价中只有根据不同的基坑施工工况、不同的周边环境条件,应不同用户的需求,选择不同的分析指标,才能满足复杂工况条件下地质环境评价的要求,取得较好的应用效果。
rfid。
BP算法的基本思想是:学习过程由信号正向传播与误差的反向回传两个部分组成;正向传播时,输入样本从输入层传入,经各隐层依次逐层处理,传向输出层,若输出层输出与期望不符,则将误差作为调整信号逐层反向回传,对神经元之间的连接权矩阵做出处理,使误差减小。
经反复学习,最终使误差减小到可接受的范围。具体步骤如下:1、从训练集中取出某一样本,把信息输入网络中。2、通过各节点间的连接情况正向逐层处理后,得到神经网络的实际输出。
3、计算网络实际输出与期望输出的误差。4、将误差逐层反向回传至之前各层,并按一定原则将误差信号加载到连接权值上,使整个神经网络的连接权值向误差减小的方向转化。
5、対训练集中每一个输入—输出样本对重复以上步骤,直到整个训练样本集的误差减小到符合要求为止。
一、计算方法不同1、前馈神经网络:一种最简单的神经网络,各神经元分层排列。每个神经元只与前一层的神经元相连。接收前一层的输出,并输出给下一层.各层间没有反馈。
2、BP神经网络:是一种按照误差逆向传播算法训练的多层前馈神经网络。3、卷积神经网络:包含卷积计算且具有深度结构的前馈神经网络。
二、用途不同1、前馈神经网络:主要应用包括感知器网络、BP网络和RBF网络。
2、BP神经网络:(1)函数逼近:用输入向量和相应的输出向量训练一个网络逼近一个函数;(2)模式识别:用一个待定的输出向量将它与输入向量联系起来;(3)分类:把输入向量所定义的合适方式进行分类;(4)数据压缩:减少输出向量维数以便于传输或存储。
3、卷积神经网络:可应用于图像识别、物体识别等计算机视觉、自然语言处理、物理学和遥感科学等领域。联系:BP神经网络和卷积神经网络都属于前馈神经网络,三者都属于人工神经网络。因此,三者原理和结构相同。
三、作用不同1、前馈神经网络:结构简单,应用广泛,能够以任意精度逼近任意连续函数及平方可积函数.而且可以精确实现任意有限训练样本集。2、BP神经网络:具有很强的非线性映射能力和柔性的网络结构。
网络的中间层数、各层的神经元个数可根据具体情况任意设定,并且随着结构的差异其性能也有所不同。3、卷积神经网络:具有表征学习能力,能够按其阶层结构对输入信息进行平移不变分类。
扩展资料:1、BP神经网络优劣势BP神经网络无论在网络理论还是在性能方面已比较成熟。其突出优点就是具有很强的非线性映射能力和柔性的网络结构。
网络的中间层数、各层的神经元个数可根据具体情况任意设定,并且随着结构的差异其性能也有所不同。但是BP神经网络也存在以下的一些主要缺陷。
①学习速度慢,即使是一个简单的问题,一般也需要几百次甚至上千次的学习才能收敛。②容易陷入局部极小值。③网络层数、神经元个数的选择没有相应的理论指导。④网络推广能力有限。
2、人工神经网络的特点和优越性,主要表现在以下三个方面①具有自学习功能。
例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。
预期未来的人工神经网络计算机将为人类提供经济预测、效益预测,其应用前途是很远大的。②具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。③具有高速寻找优化解的能力。
寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。
参考资料:百度百科—前馈神经网络百度百科—BP神经网络百度百科—卷积神经网络百度百科—人工神经网络。
【热心相助】您好!BP神经网络在土木工程中的应用很多。
1.BP神经网络在岩土工程中优化2.BP神经网络在桥梁施工控制中的应用3.BP神经网络在现场混凝土强度的预测应用4.BP神经网络在工程项目管理中的应用5.在分岔隧道位移反分析中的应用6.神经网络智能算法在土木工程结构健康监测中的应用7.BP人工神经网络在深层搅拌桩复合地基承载力计算中的应用8.BP神经网络在房地产投资风险分析中的应用9.BP人工神经网络在青藏铁路南段地壳稳定性定量评价中的应用10.基于神经网络的土木工程结构损伤识别。
地面沉降是多种自然和人为因素共同作用的结果。
各种要素发生作用的时空序列、影响强度和方向以及它们之间的关系处于不断变化之中,同时各因素的变化及其影响并不是单方面的,各变量之间相互形成制约关系,这使得地面沉降过程极具复杂性。
因此,要求预测模型能以在现有资料、信息基础,准确反映研究区的自然背景条件、地下水开采行为与地面沉降过程之间的复杂联系,并能识别和适应不同影响因素随时间发生的改变。
BP神经网络作为一个非线性系统,可用于逼近非线性映射关系,也可用于逼近一个极为复杂的函数关系,是解释和模拟地面沉降等高度复杂的非线性动力学系统问题的一种较好的方法。
8.4.1.1训练样本的确定根据第4章的分析,影响研究区域地面沉降过程的变量包含着复杂的自然和人为因素,超采深层地下水是造成研究区1986年以后地面沉降的主要原因,深层地下水的开采量和沉降监测点附近的各含水层组水位均与地面沉降有着很好的相关性。
本区第四系浅层地下水系统(第Ⅰ含水层组)除河漫滩地段,一般为TDS都高于2g/L的咸水,因此工农业用途较少,水位一般保持天然状态,在本次模型研究中不予考虑。
由于区内各地面沉降监测点的地面高程每年测量一次,为了保持与地面沉降数据的一致性,使神经网络模型能准确识别地下水开采与地面沉降之间的关系,所有数据均整理成年平均的形式。
本章选择了控沉点处深层地下水系统的年均水位和区域地下水开采量作为模型的输入变量,考虑到水位和开采量的变化与沉降变形并不同步,有明显的滞后性存在,本章将前一年的开采量和年均水位也作为输入,故模型的输入变量为四个。
以收集到的区内每个地面沉降监测点的年沉降量作为模型的输出变量,通过选择适合的隐含层数和隐层神经单元数构建BP模型,对地面沉降的趋势进行预测。
本次收集到的地面沉降监测点处并未有常观孔的水位数据,如果根据历年实测等水位线推算,会产生很大的误差,导致预测结果的不稳定性。
基于已经建立好的Modflow数值模型,利用ProcessingModflow软件里的水井子程序包,在控沉点处设置虚拟的水位观测井,通过软件模拟出的不同时期的水位,作为地面沉降神经网络模型的输入层,从而避免了以往的将各含水层组平均水位作为模型输入所带来的误差[55]。
考虑到深层地下水系统各含水层组的水力联系较为密切,本次在每个地面沉降监测点处只设置一个水位观测井,来模拟深层地下水系统的水位。
水井滤水管的起始位置与该点含水层的位置相对应,即滤水管的长度即为含水层的厚度。观测井在模型中的位置如8.31所示,绿色的点即为虚拟水位观测井。
从图中可以看出6个沉降点在研究区内分布均匀,处于不同的沉降区域,有一定的代表性,通过对这6个点的地面沉降进行预测,可以反映出不同区域的沉降趋势。数值模型模拟得到的各沉降点年均水位如图8.32所示。
图8.31控沉点虚拟水井在Modflow数值模型中的分布示意图图8.32模拟得到的各沉降点处虚拟水井年均水位动态8.4.1.2样本数据的预处理由于BP网络的输入层物理量及数值相差甚远(不属于一个数量级),为了加快网络收敛的速度,在训练之前须将各输入物理量进行预处理。
数据的预处理方法主要有标准化法、重新定标法、变换法和比例放缩法等等。
本章所选用的是一种最常用的比例压缩法,公式为[56]变环境条件下的水资源保护与可持续利用研究式中:X为原始数据;Xmax、Xmin为原始数据的最大值和最小值;T为变换后的数据,也称之为目标数据;Tmax、Tmin为目标数据的最大值和最小值。
由于Sigmoid函数在值域[0,0.1]和[0.9,1.0]区域内曲线变化极为平坦,因此合适的数据处理是将各输入物理量归至[0.1,0.9]之间。
本章用式(8.7)将每个样本输入层的4个物理量进行归一化处理变环境条件下的水资源保护与可持续利用研究处理后的数据见表8.14。
表8.14BP神经网络模型数据归一化表续表8.4.1.3网络结构的确定BP神经网络的建立,其重点在于网络结构的设计,只要隐层中有足够多的神经元,多层前向网络可以用来逼近几乎任何一个函数。
一般地,网络结构(隐层数和隐层神经元数)和参数(权值和偏置值)共同决定着神经网络所能实现的函数的复杂程度的上限。结构简单的网络所能实现的函数类型是非常有限的,参数过多的网络可能会对数据拟合过度。
本章将输入样本的个数定为4个,输出样本为1个。
但是对于隐含层数及隐含层所含神经元个数的选择,到目前为止还没有明确的方法可以计算出实际需要多少层或多少神经元就可以满足预测精度的要求,在选择时通常是采用试算的方法[56,57]。
为了保证模型的预测精度和范化能力,根据收集到的资料的连续性,本次研究利用1988~2002年15组地面沉降历史观测数据和对应的当年及前一年的开采量、年均水位组织训练,以2003年和2004年的实测地面沉降数据校验模型的预测能力,尝试多种试验性网络结构,其他模型参数的选择采取保守方式,以牺牲训练速度换取模型稳定性。
以2003年和2004年的平均相对误差均小于20%作为筛选标准,最终选择三层BP网络作为模型结构,隐层神经元的个数设置为3。网络结构如图8.33所示,参数见表8.15。
表8.15BP网络模型参数一览表图8.33神经网络模型结构图8.4.1.4网络的训练与预测采用图8.33确定的网络结构对数据进行训练,各个沉降点的训练过程和拟合效果如图8.34、图8.35所示。
从图8.35可以看出,训练后的BP网络能很好地逼近给定的目标函数。说明该模型的泛化能力较好,模拟的结果比较可靠。
通过该模型模拟了6个沉降点在2003和2004年的沉降量(表8.16),可以看出2003年和2004年模拟值和实际拟合较好,两年的平均相对误差均小于20%,说明BP神经网络可以用来预测地面沉降的趋势。
表8.16监测点年沉降量模拟误差表图8.34各沉降点训练过程图8.4.1.5模型物理意义探讨虽然现今的BP神经网络还是一个黑箱模型,其参数没有水文物理意义[58]。
但从结构上分析,本章认为地面沉降与ANN是同构的。
对于每个控沉点来说,深层地下水系统的开采量和含水层组的水位变化,都会引起地层应力的响应,从而导致整体的地面标高发生变化,这一过程可以与BP神经网络结构进行类比。
其中,深层地下水系统的3个含水层组相当于隐含层中的3个神经元,各含水层组对地面沉降的奉献值相当于隐含层中人工神经元的阈值,整体上来说,本次用来模拟地面沉降的BP神经网络结构已经灰箱化(表8.17)。
图8.35各监测点年沉降量神经网络模型拟合图表8.17BP神经网络构件物理意义一览表。
神经网络可以用作分类、聚类、预测等。神经网络需要有一定量的历史数据,通过历史数据的训练,网络可以学习到数据中隐含的知识。
在你的问题中,首先要找到某些问题的一些特征,以及对应的评价数据,用这些数据来训练神经网络。虽然BP网络得到了广泛的应用,但自身也存在一些缺陷和不足,主要包括以下几个方面的问题。
首先,由于学习速率是固定的,因此网络的收敛速度慢,需要较长的训练时间。
对于一些复杂问题,BP算法需要的训练时间可能非常长,这主要是由于学习速率太小造成的,可采用变化的学习速率或自适应的学习速率加以改进。
其次,BP算法可以使权值收敛到某个值,但并不保证其为误差平面的全局最小值,这是因为采用梯度下降法可能产生一个局部最小值。对于这个问题,可以采用附加动量法来解决。
再次,网络隐含层的层数和单元数的选择尚无理论上的指导,一般是根据经验或者通过反复实验确定。因此,网络往往存在很大的冗余性,在一定程度上也增加了网络学习的负担。最后,网络的学习和记忆具有不稳定性。
也就是说,如果增加了学习样本,训练好的网络就需要从头开始训练,对于以前的权值和阈值是没有记忆的。但是可以将预测、分类或聚类做的比较好的权值保存。
。
神经网络(ArtificialNeuralNetworks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(ConnectionModel),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。
这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。神经网络可以用于模式识别、信号处理、知识工程、专家系统、优化组合、机器人控制等。
随着神经网络理论本身以及相关理论、相关技术的不断发展,神经网络的应用定将更加深入。
BP(BackPropagation)神经网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。
BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。
BP神经网络模型拓扑结构包括输入层(input)、隐层(hiddenlayer)和输出层(outputlayer)。