• 【回归预测】基于萤火虫算法优化模糊实现数据回归预测附matlab代码


    1 内容介绍

    浮动车数据的挖掘是目前交通领域广泛使用的研究手段之一,基本的BP神经网络也多被用于交通流的预测研究.本文引入模糊算法,结合改进萤火虫算法寻优速度快,收敛率高的特点对基本的BP神经网络进行优化,构建了路网交通流速度的预测模型.利用城市路网浮动车真实数据对模型进行训练并通过测试数据对模型预测结果进行实证分析,证明模型对特定时刻路网交通流速度预测的准确性相比于基本BP神经网络算法有46.56%的提升,对路网24h内交通流速度预测的稳定性有39.08%的提升.​

    2 仿真代码​

    %% Well, Lets do it !!!

    clc;

    clear;

    warning('off');

    % Data Loading

    data=JustLoad();

    % Generate Fuzzy Model

    ClusNum=4; % Number of Clusters in FCM

    %

    fis=GenerateFuzzy(data,ClusNum);

    %

    %% Tarining FireFly Algorithm

    FireFlyFis=FireFlyRegression(fis,data);        

    %% Plot Fuzzy FireFly Results (Train - Test)

    % Train Output Extraction

    TrTar=data.TrainTargets;

    TrainOutputs=evalfis(data.TrainInputs,FireFlyFis);

    % Test Output Extraction

    TsTar=data.TestTargets;

    TestOutputs=evalfis(data.TestInputs,FireFlyFis);

    % Train calc

    Errors=data.TrainTargets-TrainOutputs;

    MSE=mean(Errors.^2);RMSE=sqrt(MSE);  

    error_mean=mean(Errors);error_std=std(Errors);

    % Test calc

    Errors1=data.TestTargets-TestOutputs;

    MSE1=mean(Errors1.^2);RMSE1=sqrt(MSE1);  

    error_mean1=mean(Errors1);error_std1=std(Errors1);

    % Train

    figure('units','normalized','outerposition',[0 0 1 1])

    subplot(3,2,1);

    plot(data.TrainTargets,'c');hold on;

    plot(TrainOutputs,'k');legend('Target','Output');

    title('FireFly Training Part');xlabel('Sample Index');grid on;

    % Test

    subplot(3,2,2);

    plot(data.TestTargets,'c');hold on;

    plot(TestOutputs,'k');legend('FireFly Target','FireFly Output');

    title('FireFly Testing Part');xlabel('Sample Index');grid on;

    % Train

    subplot(3,2,3);

    plot(Errors,'k');legend('FireFly Training Error');

    title(['Train MSE =     ' num2str(MSE) '  ,     Train RMSE =     ' num2str(RMSE)]);grid on;

    % Test

    subplot(3,2,4);

    plot(Errors1,'k');legend('FireFly Testing Error');

    title(['Test MSE =     ' num2str(MSE1) '  ,    Test RMSE =     ' num2str(RMSE1)]);grid on;

    % Train

    subplot(3,2,5);

    h=histfit(Errors, 50);h(1).FaceColor = [.8 .8 0.3];

    title(['Train Error Mean =   ' num2str(error_mean) '  ,   Train Error STD =   ' num2str(error_std)]);

    % Test

    subplot(3,2,6);

    h=histfit(Errors1, 50);h(1).FaceColor = [.8 .8 0.3];

    title(['Test Error Mean =   ' num2str(error_mean1) '  ,   Test Error STD =    ' num2str(error_std1)]);

    %% Plot Just Fuzzy Results (Train - Test)

    % Train Output Extraction

    fTrainOutputs=evalfis(data.TrainInputs,fis);

    % Test Output Extraction

    fTestOutputs=evalfis(data.TestInputs,fis);

    % Train calc

    fErrors=data.TrainTargets-fTrainOutputs;

    fMSE=mean(fErrors.^2);fRMSE=sqrt(fMSE);  

    ferror_mean=mean(fErrors);ferror_std=std(fErrors);

    % Test calc

    fErrors1=data.TestTargets-fTestOutputs;

    fMSE1=mean(fErrors1.^2);fRMSE1=sqrt(fMSE1);  

    ferror_mean1=mean(fErrors1);ferror_std1=std(fErrors1);

    % Train

    figure('units','normalized','outerposition',[0 0 1 1])

    subplot(3,2,1);

    plot(data.TrainTargets,'m');hold on;

    plot(fTrainOutputs,'k');legend('Target','Output');

    title('Fuzzy Training Part');xlabel('Sample Index');grid on;

    % Test

    subplot(3,2,2);

    plot(data.TestTargets,'m');hold on;

    plot(fTestOutputs,'k');legend('Target','Output');

    title('Fuzzy Testing Part');xlabel('Sample Index');grid on;

    % Train

    subplot(3,2,3);

    plot(fErrors,'g');legend('Fuzzy Training Error');

    title(['Train MSE =     ' num2str(fMSE) '   ,    Test RMSE =     ' num2str(fRMSE)]);grid on;

    % Test

    subplot(3,2,4);

    plot(fErrors1,'g');legend('Fuzzy Testing Error');

    title(['Train MSE =     ' num2str(fMSE1) '   ,    Test RMSE =     ' num2str(fRMSE1)]);grid on;

    % Train

    subplot(3,2,5);

    h=histfit(fErrors, 50);h(1).FaceColor = [.3 .8 0.3];

    title(['Train Error Mean =    ' num2str(ferror_mean) '   ,   Train Error STD =    ' num2str(ferror_std)]);

    % Test

    subplot(3,2,6);

    h=histfit(fErrors1, 50);h(1).FaceColor = [.3 .8 0.3];

    title(['Test Error Mean =    ' num2str(ferror_mean1) '   ,   Test Error STD =    ' num2str(ferror_std1)]);

    %% Regression Plots

    figure('units','normalized','outerposition',[0 0 1 1])

    subplot(2,2,1)

    [population2,gof] = fit(TrTar,TrainOutputs,'poly4');

    plot(TrTar,TrainOutputs,'o',...

        'LineWidth',1,...

        'MarkerSize',6,...

        'MarkerEdgeColor','g',...

        'MarkerFaceColor',[0.9,0.1,0.1]);

        title(['FireFly Train - R =  ' num2str(1-gof.rmse)]);

            xlabel('Train Target');

        ylabel('Train Output');   

    hold on

    plot(population2,'b-','predobs');

        xlabel('Train Target');

        ylabel('Train Output');   

    hold off

    subplot(2,2,2)

    [population2,gof] = fit(TsTar, TestOutputs,'poly4');

    plot(TsTar, TestOutputs,'o',...

        'LineWidth',1,...

        'MarkerSize',6,...

        'MarkerEdgeColor','g',...

        'MarkerFaceColor',[0.9,0.1,0.1]);

        title(['FireFly Test - R =  ' num2str(1-gof.rmse)]);

        xlabel('Test Target');

        ylabel('Test Output');    

    hold on

    plot(population2,'b-','predobs');

        xlabel('Test Target');

        ylabel('Test Output');

     hold off

    subplot(2,2,3)

    [population2,gof] = fit(TrTar,fTrainOutputs,'poly4');

    plot(TrTar,fTrainOutputs,'o',...

        'LineWidth',1,...

        'MarkerSize',6,...

        'MarkerEdgeColor','b',...

        'MarkerFaceColor',[0.3,0.9,0.2]);

        title(['Fuzzy Train - R =  ' num2str(1-gof.rmse)]);

            xlabel('Train Target');

        ylabel('Train Output');   

    hold on

    plot(population2,'r-','predobs');

        xlabel('Train Target');

        ylabel('Train Output');   

    hold off

    subplot(2,2,4)

    [population2,gof] = fit(TsTar, fTestOutputs,'poly4');

    plot(TsTar, fTestOutputs,'o',...

        'LineWidth',1,...

        'MarkerSize',6,...

        'MarkerEdgeColor','b',...

        'MarkerFaceColor',[0.3,0.9,0.2]);

        title(['Fuzzy Test - R =  ' num2str(1-gof.rmse)]);

        xlabel('Test Target');

        ylabel('Test Output');    

    hold on

    plot(population2,'r-','predobs');

        xlabel('Test Target');

        ylabel('Test Output');

     hold off

    %% Errors

    % Fuzzy Regression Train and Test Errors]

    % Train

     fprintf('Fuzzy Regression Training "MSE" Is =  %0.4f.\n',fMSE)

     fprintf('Fuzzy Regression Training "RMSE" Is =  %0.4f.\n',fRMSE)

     fprintf('Fuzzy Regression Training "Mean Error" Is =  %0.4f.\n',ferror_mean)

     fprintf('Fuzzy Regression Training "STD Error" Is =  %0.4f.\n',ferror_std)

     fprintf('Fuzzy Regression Training "MAE" Is =  %0.4f.\n',mae(data.TrainTargets,fTrainOutputs))

    % Test

     fprintf('Fuzzy Regression Testing "MSE" Is =  %0.4f.\n',fMSE1)

     fprintf('Fuzzy Regression Testing "RMSE" Is =  %0.4f.\n',fRMSE1)

     fprintf('Fuzzy Regression Testing "Mean Error" Is =  %0.4f.\n',ferror_mean1)

     fprintf('Fuzzy Regression Testing "STD Error" Is =  %0.4f.\n',ferror_std1)

     fprintf('Fuzzy Regression Testing "MAE" Is =  %0.4f.\n',mae(data.TestTargets,fTestOutputs))

    % FireFly Regression Algorithm Train and Test Errors

    % Train

     fprintf('FireFly Regression Training "MSE" Is =  %0.4f.\n',MSE)

     fprintf('FireFly Regression Training "RMSE" Is =  %0.4f.\n',RMSE)

     fprintf('FireFly Regression Training "Mean Error" Is =  %0.4f.\n',error_mean)

     fprintf('FireFly Regression Training "STD Error" Is =  %0.4f.\n',error_std)

     fprintf('FireFly Regression Training "MAE" Is =  %0.4f.\n',mae(data.TrainTargets,TrainOutputs))

    % Test

     fprintf('FireFly Regression Testing "MSE" Is =  %0.4f.\n',MSE1)

     fprintf('FireFly Regression Testing "RMSE" Is =  %0.4f.\n',RMSE1)

     fprintf('FireFly Regression Testing "Mean Error" Is =  %0.4f.\n',error_mean1)

     fprintf('FireFly Regression Testing "STD Error" Is =  %0.4f.\n',error_std1)

     fprintf('FireFly Regression Testing "MAE" Is =  %0.4f.\n',mae(data.TestTargets,TestOutputs))

    3 运行结果

    4 参考文献

    [1]王昕, 黄柯, 郑益慧,等. 基于萤火虫算法-广义回归神经网络的光伏发电功率组合预测[J]. 电网技术, 2017, 41(2):7.

    [2]黄新波, 宋桐, 王娅娜,等. 基于灰模糊萤火虫算法优化的变压器故障诊断方法:, CN103698627B[P]. 2016.

    博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

    部分理论引用网络文献,若有侵权联系博主删除。

  • 相关阅读:
    8年测试工程师总结出来的《测试核心价值》与《0基础转行软件测试超全学习指南》
    安装Sentinel
    32位二进制转浮点数
    [蓝桥杯 2021 省 AB] 砝码称重
    Pytorch-MLP-Mnist
    基于Netty的WebSocket开发网页版聊天室
    中位数的题
    AIoT通用组件服务攻略之设备“收纳”好帮手——分组管理
    【无标题】
    自动驾驶入门:规划
  • 原文地址:https://blog.csdn.net/qq_59747472/article/details/126268143