(
11
)
∫
d
x
(
x
2
+
1
)
(
x
2
+
x
+
1
)
=
∫
(
−
x
x
2
+
1
+
x
+
1
x
2
+
x
+
1
)
d
x
=
−
1
2
l
n
(
x
2
+
1
)
+
1
2
∫
1
x
2
+
x
+
1
d
(
x
2
+
x
+
1
)
+
1
2
∫
1
(
x
+
1
2
)
2
+
3
4
d
x
=
−
1
2
l
n
(
x
2
+
1
)
+
1
2
l
n
(
x
2
+
x
+
1
)
+
1
3
a
r
c
t
a
n
2
x
+
1
3
+
C
(
12
)
∫
(
x
+
1
)
2
(
x
2
+
1
)
2
d
x
=
∫
(
1
1
+
x
2
+
2
x
(
x
2
+
1
)
2
)
d
x
=
∫
1
1
+
x
2
d
x
+
2
∫
x
(
x
2
+
1
)
2
d
x
=
∫
1
1
+
x
2
d
x
+
∫
1
(
x
2
+
1
)
2
d
(
x
2
+
1
)
=
a
r
c
t
a
n
x
−
1
x
2
+
1
+
C
(
13
)
∫
−
x
2
−
2
(
x
2
+
x
+
1
)
2
d
x
=
∫
−
x
2
−
x
−
1
+
x
−
1
(
x
2
+
x
+
1
)
2
d
x
=
−
∫
1
x
2
+
x
+
1
d
x
+
∫
2
x
+
1
(
x
2
+
x
+
1
)
2
d
x
−
∫
x
+
2
(
x
2
+
x
+
1
)
2
d
x
=
−
∫
1
x
2
+
x
+
1
d
x
+
1
2
∫
1
(
x
2
+
x
+
1
)
2
d
(
x
2
+
x
+
1
)
−
3
2
∫
1
(
x
2
+
x
+
1
)
2
d
x
,
设
u
=
x
+
1
2
,
a
=
3
2
,得
∫
1
(
x
2
+
x
+
1
)
2
d
x
=
∫
1
(
u
2
+
a
2
)
2
d
x
=
1
2
a
3
[
a
r
c
t
a
n
u
a
+
a
u
a
2
+
u
2
]
+
C
=
2
3
a
r
c
t
a
n
2
x
+
1
3
+
1
2
⋅
2
x
+
1
x
2
+
x
+
1
,代入原式,得
−
2
3
a
r
c
t
a
n
2
x
+
1
3
−
1
2
⋅
1
x
2
+
x
+
1
−
2
3
a
r
c
t
a
n
2
x
+
1
3
−
1
2
⋅
2
x
+
1
x
2
+
x
+
1
+
C
=
−
4
3
a
r
c
t
a
n
2
x
+
1
3
−
x
+
1
x
2
+
x
+
1
+
C
(
14
)
∫
d
x
3
+
s
i
n
2
x
=
−
∫
c
s
c
2
x
3
c
s
c
2
x
+
1
d
x
=
−
1
3
c
o
t
2
x
+
4
d
(
c
o
t
x
)
,令
u
=
c
o
t
x
,得
−
∫
1
3
u
2
+
4
d
u
=
−
1
2
3
a
r
c
t
a
n
3
u
2
+
C
=
−
1
2
3
a
r
c
t
a
n
3
c
o
t
x
2
+
C
(
15
)
设
u
=
t
a
n
x
2
,则
x
=
2
a
r
c
t
a
n
u
,
d
x
=
2
1
+
u
2
d
u
,得
∫
d
x
3
+
c
o
s
x
=
∫
1
3
+
1
−
u
2
1
+
u
2
⋅
2
1
+
u
2
d
u
=
∫
1
2
+
u
2
d
u
=
1
2
a
r
c
t
a
n
u
2
+
C
=
1
2
a
r
c
t
a
n
t
a
n
x
2
2
+
C
(
16
)
设
u
=
t
a
n
x
2
,则
x
=
2
a
r
c
t
a
n
u
,
d
x
=
2
1
+
u
2
d
u
,得
∫
d
x
2
+
s
i
n
x
=
∫
1
2
+
2
u
1
+
u
2
⋅
2
1
+
u
2
d
u
=
∫
1
u
2
+
u
+
1
d
u
=
2
3
a
r
c
t
a
n
2
u
+
1
3
+
C
=
2
3
a
r
c
t
a
n
2
t
a
n
x
2
+
1
3
+
C
(
17
)
设
u
=
t
a
n
x
2
,则
x
=
2
a
r
c
t
a
n
u
,
d
x
=
2
1
+
u
2
d
u
,得
∫
d
x
1
+
s
i
n
x
+
c
o
s
x
=
∫
1
1
+
2
u
1
+
u
2
+
1
−
u
2
1
+
u
2
⋅
2
1
+
u
2
d
u
=
∫
1
1
+
u
d
u
=
l
n
∣
1
+
u
∣
+
C
=
l
n
∣
1
+
t
a
n
x
2
∣
+
C
(
18
)
设
u
=
t
a
n
x
2
,则
x
=
2
a
r
c
t
a
n
u
,
d
x
=
2
1
+
u
2
d
u
,得
∫
d
x
2
s
i
n
x
−
c
o
s
x
+
5
=
∫
1
4
u
1
+
u
2
−
1
−
u
2
1
+
u
2
+
5
⋅
2
1
+
u
2
d
u
=
1
3
∫
1
(
u
+
1
3
)
2
+
5
9
d
u
=
1
5
a
r
c
t
a
n
3
u
+
1
5
+
C
=
1
5
a
r
c
t
a
n
3
t
a
n
x
2
+
1
5
+
C
(
19
)
设
u
=
x
+
1
3
,则
x
=
u
3
−
1
,
d
x
=
3
u
2
d
u
,得
∫
d
x
1
+
x
+
1
3
=
3
∫
u
2
1
+
u
d
u
,设
t
=
1
+
u
,则
u
=
t
−
1
,
d
u
=
d
t
,得
3
∫
u
2
1
+
u
d
u
=
3
∫
(
t
−
2
+
1
t
)
d
t
=
3
2
t
2
−
6
t
+
3
l
n
∣
t
∣
+
C
=
3
2
(
x
+
1
)
2
3
−
3
x
+
1
3
+
3
l
n
∣
1
+
x
+
1
3
∣
+
C
(
20
)
设
u
=
x
,则
x
=
u
2
,
d
x
=
2
u
d
u
,得
∫
(
x
)
3
−
1
x
+
1
d
x
=
2
∫
u
4
−
u
u
+
1
d
u
,设
t
=
u
+
1
,
u
=
t
−
1
,
d
u
=
d
t
,得
2
∫
u
4
−
u
u
+
1
d
u
=
2
∫
(
t
3
−
4
t
2
+
6
t
−
5
+
2
t
)
d
t
=
1
2
t
4
−
8
3
t
3
+
6
t
2
−
10
t
+
4
l
n
∣
t
∣
+
C
=
1
2
x
2
−
2
3
x
x
−
4
x
+
x
+
4
l
n
(
x
+
1
)
+
C
(
21
)
设
u
=
x
+
1
,则
x
=
u
2
−
1
,
d
x
=
2
u
d
u
,得
∫
x
+
1
−
1
x
+
1
+
1
d
x
=
2
∫
(
u
−
2
+
2
u
+
1
)
d
u
=
u
2
−
4
u
+
4
l
n
∣
u
+
1
∣
+
C
=
x
−
4
x
+
1
+
4
l
n
(
x
+
1
+
1
)
+
C
(
22
)
设
u
=
x
4
,则
x
=
u
4
,
d
x
=
4
u
3
d
u
,得
∫
d
x
x
+
x
4
=
4
∫
u
2
u
+
1
d
u
=
4
∫
(
u
−
1
+
1
u
+
1
)
d
u
=
2
u
2
−
4
u
+
4
l
n
∣
u
+
1
∣
+
C
=
2
x
−
4
x
4
+
4
l
n
(
x
4
+
1
)
+
C
(
23
)
设
u
=
1
−
x
1
+
x
,则
x
=
1
−
u
2
1
+
u
2
,
d
x
=
−
4
u
(
1
+
u
2
)
2
d
u
,得
∫
1
−
x
1
+
x
d
x
x
=
∫
−
4
u
2
(
1
−
u
2
)
(
1
+
u
2
)
d
u
=
∫
(
2
1
+
u
2
−
1
1
−
u
−
1
1
+
u
)
d
u
=
2
a
r
c
t
a
n
u
+
l
n
∣
1
−
u
∣
−
l
n
∣
1
+
u
∣
+
C
=
2
a
r
c
t
a
n
1
−
x
1
+
x
+
l
n
∣
1
+
x
−
1
−
x
1
+
x
+
1
−
x
∣
+
C
(
24
)
∫
d
x
(
x
+
1
)
2
(
x
−
1
)
4
3
=
∫
1
x
2
−
1
x
+
1
x
−
1
3
d
x
,设
u
=
x
+
1
x
−
1
3
,则
x
=
u
3
+
1
u
3
−
1
,
d
x
=
−
6
u
2
(
u
3
−
1
)
2
d
u
,得
∫
1
x
2
−
1
x
+
1
x
−
1
3
d
x
=
∫
u
(
u
3
+
1
u
3
−
1
)
2
−
1
⋅
−
6
u
2
(
u
3
−
1
)
2
d
u
=
−
3
2
∫
d
u
=
−
3
2
u
+
C
=
−
3
2
x
+
1
x
−
1
3
+
C