• yolov5 加入可形变卷积


    修改common.py 文件

    from torchvision.ops import DeformConv2d
    
    class DCNConv(nn.Module):
        # Standard convolution
        def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
            super().__init__()
            self.conv1 = nn.Conv2d(c1, c2, 3, 2, 1, groups=g, bias=False)
            deformable_groups = 1
            offset_channels = 18
            self.conv2_offset = nn.Conv2d(c2, deformable_groups * offset_channels, kernel_size=3, padding=1)
            self.conv2 = DeformConv2d(c2, c2, kernel_size=3, padding=1, bias=False)
            
            # self.conv2 = DeformableConv2d(c2, c2, k, s, autopad(k, p), groups=g, bias=False)
            self.bn1 = nn.BatchNorm2d(c2)
            self.act1 = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
            self.bn2 = nn.BatchNorm2d(c2)
            self.act2 = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
    
        def forward(self, x):
            # print(x.shape)
            # print('-'*50)
            x = self.act1(self.bn1(self.conv1(x)))
            # print(x.shape)
            offset = self.conv2_offset(x)
            x = self.act2(self.bn2(self.conv2(x,offset)))
            # print('-'*50)
            # print(x.shape)
            return x
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28

    修改yolo.p文件
    找到parse_model函数,把DCNConv加入进去

     if m in (Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
                     BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x, CoordAtt, DCNConv):
    
    • 1
    • 2

    修改yolov5s.yaml文件

    # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
    
    # Parameters
    nc: 1  # number of classes
    depth_multiple: 0.33  # model depth multiple
    width_multiple: 0.50  # layer channel multiple
    anchors:
    
    	- [10,13, 16,30, 33,23]  
    	- [30,61, 62,45, 59,119]  # P4/16
    	- [116,90, 156,198, 373,326]  # P5/32
    
    # YOLOv5 v6.0 backbone
    backbone:
      # [from, number, module, args]
      [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
       [-1, 1, DCNConv, [128, 3, 2]],  # 1-P2/4
       [-1, 3, C3, [128]],
       [-1, 1, DCNConv, [256, 3, 2]],  # 3-P3/8
       [-1, 6, C3, [256]],
       [-1, 1, DCNConv, [512, 3, 2]],  # 5-P4/16
       [-1, 9, C3, [512]],
       [-1, 1, DCNConv, [1024, 3, 2]],  # 7-P5/32
       [-1, 3, C3, [1024]],
       [-1, 1, SPPF, [1024, 5]],  # 9
      ]
    
    # YOLOv5 v6.0 head
    head:
      [[-1, 1, Conv, [512, 1, 1]],
       [-1, 1, nn.Upsample, [None, 2, 'nearest']],
       [[-1, 6], 1, Concat, [1]],  # cat backbone P4
       [-1, 3, C3, [512, False]],  # 13
    
       [-1, 1, Conv, [256, 1, 1]],
       [-1, 1, nn.Upsample, [None, 2, 'nearest']],
       [[-1, 4], 1, Concat, [1]],  # cat backbone P3
       [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
    
       [-1, 1, Conv, [256, 3, 2]],
       [[-1, 14], 1, Concat, [1]],  # cat head P4
       [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
    
       [-1, 1, Conv, [512, 3, 2]],
       [[-1, 10], 1, Concat, [1]],  # cat head P5
       [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
    
       [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
      ]
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49

    运行下面命令查看网络结构

    python models/yolo.py --cfg models/yolov5s.yaml
    
    
    • 1
    • 2

    在自己的数据集上,map50提升了5%

  • 相关阅读:
    分析性质题(集合类):CF1371F
    24计算机考研深大经验分享(计算机专业考研综合安排)
    matlab二维曲面散点图插值方法
    jsp精品课程网站系统Myeclipse开发mysql数据库web结构java编程计算机网页项目
    vulfocus——thinkphp3.2.x代码执行
    贝叶斯分类器详解
    【LeetCode力扣】007. 整数反转(Python)
    Linux网络编程- 原始套接字(Raw Socket)
    从爆款IP到独家IP,汽车之家内容战略如何登高?
    职场中的道德与伦理:如何在工作中坚守原则?
  • 原文地址:https://blog.csdn.net/shuaijieer/article/details/126249088