欧拉计划提供了几百道由易到难的数学问题,你可以用任何办法去解决它,当然主要还得靠编程,但编程语言不限,已经有Java、C#、Python、Lisp、Haskell等各种解法。
“欧拉计划”的官网是:https://projecteuler.net,你可以在这个网站上注册一个账号,当你提交了正确答案后,可以在里面的论坛里进行讨论,借鉴别人的思路和代码。
如果你的英文不过关,有人已经将几乎所有的题目翻译成了中文,网址:http://pe-cn.github.io。
强烈建议你在看答案之前,自己先尝试编程挑战一下,可以复习一下学到的Python的语法。
在一个矩阵里,找到一条线上、相邻的、乘积最大的4个数,求积。
用暴力全遍历直接求解即可。
arr = [[ 8, 2, 22, 97, 38, 15, 0, 40, 0, 75, 4, 5, 7, 78, 52, 12, 50, 77, 91, 8],
[49, 49, 99, 40, 17, 81, 18, 57, 60, 87, 17, 40, 98, 43, 69, 48, 4, 56, 62, 0],
[81, 49, 31, 73, 55, 79, 14, 29, 93, 71, 40, 67, 53, 88, 30, 3, 49, 13, 36, 65],
[52, 70, 95, 23, 4, 60, 11, 42, 69, 24, 68, 56, 1, 32, 56, 71, 37, 2, 36, 91],
[22, 31, 16, 71, 51, 67, 63, 89, 41, 92, 36, 54, 22, 40, 40, 28, 66, 33, 13, 80],
[24, 47, 32, 60, 99, 3, 45, 2, 44, 75, 33, 53, 78, 36, 84, 20, 35, 17, 12, 50],
[32, 98, 81, 28, 64, 23, 67, 10, 26, 38, 40, 67, 59, 54, 70, 66, 18, 38, 64, 70],
[67, 26, 20, 68, 2, 62, 12, 20, 95, 63, 94, 39, 63, 8, 40, 91, 66, 49, 94, 21],
[24, 55, 58, 5, 66, 73, 99, 26, 97, 17, 78, 78, 96, 83, 14, 88, 34, 89, 63, 72],
[21, 36, 23, 9, 75, 0, 76, 44, 20, 45, 35, 14, 0, 61, 33, 97, 34, 31, 33, 95],
[78, 17, 53, 28, 22, 75, 31, 67, 15, 94, 3, 80, 4, 62, 16, 14, 9, 53, 56, 92],
[16, 39, 5, 42, 96, 35, 31, 47, 55, 58, 88, 24, 0, 17, 54, 24, 36, 29, 85, 57],
[86, 56, 0, 48, 35, 71, 89, 7, 5, 44, 44, 37, 44, 60, 21, 58, 51, 54, 17, 58],
[19, 80, 81, 68, 5, 94, 47, 69, 28, 73, 92, 13, 86, 52, 17, 77, 4, 89, 55, 40],
[ 4, 52, 8, 83, 97, 35, 99, 16, 7, 97, 57, 32, 16, 26, 26, 79, 33, 27, 98, 66],
[88, 36, 68, 87, 57, 62, 20, 72, 3, 46, 33, 67, 46, 55, 12, 32, 63, 93, 53, 69],
[ 4, 42, 16, 73, 38, 25, 39, 11, 24, 94, 72, 18, 8, 46, 29, 32, 40, 62, 76, 36],
[20, 69, 36, 41, 72, 30, 23, 88, 34, 62, 99, 69, 82, 67, 59, 85, 74, 4, 36, 16],
[20, 73, 35, 29, 78, 31, 90, 1, 74, 31, 49, 71, 48, 86, 81, 16, 23, 57, 5, 54],
[ 1, 70, 54, 71, 83, 51, 54, 69, 16, 92, 33, 48, 61, 43, 52, 1, 89, 19, 67, 48]
]
def prod4(i, j, inc_i, inc_j):
prod = arr[i][j]
for _ in range(3):
i += inc_i
j += inc_j
if i < 0 or j < 0 or i >= 20 or j >=20:
return 0
prod *= arr[i][j]
return prod
max_prod = 0
for i in range(20):
for j in range(20):
for (inc_i, inc_j) in [(1, 0), (0, 1), (1, 1), (1, -1)]:
p = prod4(i, j, inc_i, inc_j)
if p > max_prod:
#print(i, j, inc_i, inc_j)
max_prod = p
print(max_prod)
三角形数数列是通过逐个加上自然数来生成的。例如,第7个三角形数是 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28。三角形数数列的前十项分别是:
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, …
让我们列举出前七个三角形数的所有约数:
1: 1
3: 1,3
6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28
我们可以看出,28是第一个拥有超过5个约数的三角形数。
第一个拥有超过500个约数的三角形数是多少?
先用笨办法把因子求出来,在找500个因子的三角形数的时候则非常非常慢。
def tri_number(i):
return i * (i + 1) // 2
def factors(num):
fac = filter(lambda x: num % x == 0, range(1, num+1))
return list(fac)
assert factors(1) == [1]
assert factors(3) == [1, 3]
assert factors(6) == [1, 2, 3, 6]
assert factors(10) == [1, 2, 5, 10]
assert factors(28) == [1, 2, 4, 7, 14, 28]
def tri_num_have_factors(factors_num):
i = 1
while True:
tri_num = tri_number(i)
facs = factors(tri_num)
if len(facs) > factors_num:
return tri_num
i += 1
print(tri_num_have_factors(5))
print(tri_num_have_factors(50))
print(tri_num_have_factors(500))
优化一下算法,可以发现因子只需计算前一半就行,另外一半因子可以直接用除法计算出来。
def tri_number(i):
return i * (i + 1) // 2
def half_factors(num):
s = int(num ** 0.5)
fac = filter(lambda x: num % x == 0, range(1, s+1))
return list(fac)
def factors(num):
if num == 1:
return [1]
first_half = half_factors(num)
second_half = [num // x for x in reversed(first_half)]
return first_half + second_half
assert factors(1) == [1]
assert factors(3) == [1, 3]
assert factors(6) == [1, 2, 3, 6]
assert factors(10) == [1, 2, 5, 10]
assert factors(28) == [1, 2, 4, 7, 14, 28]
def tri_num_have_factors(factors_num):
i = 1
while True:
tri_num = tri_number(i)
facs = factors(tri_num)
if len(facs) > factors_num:
return tri_num
i += 1
print(tri_num_have_factors(5))
print(tri_num_have_factors(50))
print(tri_num_have_factors(500))
利用itertools可以改写while True那段循环:
import itertools
def tri_num_have_factors(factors_num):
for i in itertools.count(1):
tri_num = tri_number(i)
facs = half_factors(tri_num)
if len(facs) * 2 > factors_num:
return tri_num
还可以改成这样:
import itertools
def tri_num_have_factors(factors_num):
tri_numbers = map(tri_number, itertools.count(1))
seq = itertools.dropwhile(lambda n: len(half_factors(n)) * 2 <= factors_num, tri_numbers)
return next(seq)
还可以变态地弄成一行:
import itertools
result = next(itertools.dropwhile(lambda n: len(list(filter(lambda x: n % x == 0, range(1, int(n ** 0.5)+1)))) * 2 <= 500, map(lambda i: i * (i + 1) // 2, itertools.count(1))))
print(result)
对数学感兴趣的朋友,还利用因子的数学性质进一步优化,提高上千倍不止,这里不展开讨论了。
有100个长达50位的大整数,求和,只取前10位数字。
numbers = [
37107287533902102798797998220837590246510135740250,
46376937677490009712648124896970078050417018260538,
74324986199524741059474233309513058123726617309629,
91942213363574161572522430563301811072406154908250,
23067588207539346171171980310421047513778063246676,
89261670696623633820136378418383684178734361726757,
28112879812849979408065481931592621691275889832738,
44274228917432520321923589422876796487670272189318,
47451445736001306439091167216856844588711603153276,
70386486105843025439939619828917593665686757934951,
62176457141856560629502157223196586755079324193331,
64906352462741904929101432445813822663347944758178,
92575867718337217661963751590579239728245598838407,
58203565325359399008402633568948830189458628227828,
80181199384826282014278194139940567587151170094390,
35398664372827112653829987240784473053190104293586,
86515506006295864861532075273371959191420517255829,
71693888707715466499115593487603532921714970056938,
54370070576826684624621495650076471787294438377604,
53282654108756828443191190634694037855217779295145,
36123272525000296071075082563815656710885258350721,
45876576172410976447339110607218265236877223636045,
17423706905851860660448207621209813287860733969412,
81142660418086830619328460811191061556940512689692,
51934325451728388641918047049293215058642563049483,
62467221648435076201727918039944693004732956340691,
15732444386908125794514089057706229429197107928209,
55037687525678773091862540744969844508330393682126,
18336384825330154686196124348767681297534375946515,
80386287592878490201521685554828717201219257766954,
78182833757993103614740356856449095527097864797581,
16726320100436897842553539920931837441497806860984,
48403098129077791799088218795327364475675590848030,
87086987551392711854517078544161852424320693150332,
59959406895756536782107074926966537676326235447210,
69793950679652694742597709739166693763042633987085,
41052684708299085211399427365734116182760315001271,
65378607361501080857009149939512557028198746004375,
35829035317434717326932123578154982629742552737307,
94953759765105305946966067683156574377167401875275,
88902802571733229619176668713819931811048770190271,
25267680276078003013678680992525463401061632866526,
36270218540497705585629946580636237993140746255962,
24074486908231174977792365466257246923322810917141,
91430288197103288597806669760892938638285025333403,
34413065578016127815921815005561868836468420090470,
23053081172816430487623791969842487255036638784583,
11487696932154902810424020138335124462181441773470,
63783299490636259666498587618221225225512486764533,
67720186971698544312419572409913959008952310058822,
95548255300263520781532296796249481641953868218774,
76085327132285723110424803456124867697064507995236,
37774242535411291684276865538926205024910326572967,
23701913275725675285653248258265463092207058596522,
29798860272258331913126375147341994889534765745501,
18495701454879288984856827726077713721403798879715,
38298203783031473527721580348144513491373226651381,
34829543829199918180278916522431027392251122869539,
40957953066405232632538044100059654939159879593635,
29746152185502371307642255121183693803580388584903,
41698116222072977186158236678424689157993532961922,
62467957194401269043877107275048102390895523597457,
23189706772547915061505504953922979530901129967519,
86188088225875314529584099251203829009407770775672,
11306739708304724483816533873502340845647058077308,
82959174767140363198008187129011875491310547126581,
97623331044818386269515456334926366572897563400500,
42846280183517070527831839425882145521227251250327,
55121603546981200581762165212827652751691296897789,
32238195734329339946437501907836945765883352399886,
75506164965184775180738168837861091527357929701337,
62177842752192623401942399639168044983993173312731,
32924185707147349566916674687634660915035914677504,
99518671430235219628894890102423325116913619626622,
73267460800591547471830798392868535206946944540724,
76841822524674417161514036427982273348055556214818,
97142617910342598647204516893989422179826088076852,
87783646182799346313767754307809363333018982642090,
10848802521674670883215120185883543223812876952786,
71329612474782464538636993009049310363619763878039,
62184073572399794223406235393808339651327408011116,
66627891981488087797941876876144230030984490851411,
60661826293682836764744779239180335110989069790714,
85786944089552990653640447425576083659976645795096,
66024396409905389607120198219976047599490197230297,
64913982680032973156037120041377903785566085089252,
16730939319872750275468906903707539413042652315011,
94809377245048795150954100921645863754710598436791,
78639167021187492431995700641917969777599028300699,
15368713711936614952811305876380278410754449733078,
40789923115535562561142322423255033685442488917353,
44889911501440648020369068063960672322193204149535,
41503128880339536053299340368006977710650566631954,
81234880673210146739058568557934581403627822703280,
82616570773948327592232845941706525094512325230608,
22918802058777319719839450180888072429661980811197,
77158542502016545090413245809786882778948721859617,
72107838435069186155435662884062257473692284509516,
20849603980134001723930671666823555245252804609722,
53503534226472524250874054075591789781264330331690,
]
first10 = str(sum(numbers))[:10]
print(first10)
Collatz序列的意思是,当一个数n是偶数时,下一数为n/2;当n为奇数时,下一个数为3*n+1。
这种序列有一个猜想,最后都会收敛于4,2,1。例如:
13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1
从100万之内挑一个数作为起始数,生成Collatz序列,哪个生成的链最长?
def collatz_len(x):
if x == 1:
return 1
y = x * 3 + 1 if x % 2 else x // 2
return collatz_len(y) + 1
max_collatz = 0
result = 0
for n in range(1, 1_000_000):
c = collatz_len(n)
if c > max_collatz:
max_collatz = c
result = n
print(n, max_collatz)
print(result)
可以缓存一些结果,避免一些重复计算。
cache = {}
def collatz_len(x):
if x == 1:
return 1
if x in cache:
return cache[x]
y = x * 3 + 1 if x % 2 else x // 2
ret = collatz_len(y) + 1
cache[x] = ret
return ret
max_collatz = 0
result = 0
for n in range(1, 1_000_000):
c = collatz_len(n)
if c > max_collatz:
max_collatz = c
result = n
print(n, max_collatz)
print(result)
第15题 网格路径
已知2x2网格中从左上角到右下角共有6条可能路径,计算20x20网格中,有多少条可能的路径。

解:
还是用递归的思路。对于m行n列的网格,可以利用其它网格的路径个数的结果,即:
P(m,n) = P(m-1,n) + P(m-1,n-1) + … + P(m-1,1) + P(m-1,0)
对于0行或者0列的网格,路径只有1条。

代码并不难:
def path_slow(m, n):
if m == 0 or n == 0:
return 1
s = 0
for j in range(n+1):
s += path_slow(m-1, j)
return s
print(path_slow(12, 12))
print(path_slow(20, 20))
求和那几行语句,还可以用列表推导式写成一行:
s = sum([path_slow(m-1, j) for j in range(n+1)])
但递归的代价有点大,程序性能很差,12x12网格很快可以搞定,但20x20就非常吃力了。
加上缓存,则性能改善非常非常大。
cache = {}
def path_fast(m, n):
if m == 0 or n == 0:
return 1
if (m, n) in cache:
return cache[(m, n)]
s = sum([path_fast(m-1, j) for j in range(n+1)])
cache[(m, n)] = s
return s
print(path_fast(20, 20))