• 欧拉计划Python解法(第11题-第15题)


    欧拉计划提供了几百道由易到难的数学问题,你可以用任何办法去解决它,当然主要还得靠编程,但编程语言不限,已经有Java、C#、Python、Lisp、Haskell等各种解法。

    “欧拉计划”的官网是:https://projecteuler.net,你可以在这个网站上注册一个账号,当你提交了正确答案后,可以在里面的论坛里进行讨论,借鉴别人的思路和代码。

    如果你的英文不过关,有人已经将几乎所有的题目翻译成了中文,网址:http://pe-cn.github.io

    强烈建议你在看答案之前,自己先尝试编程挑战一下,可以复习一下学到的Python的语法。

    第11题

    在一个矩阵里,找到一条线上、相邻的、乘积最大的4个数,求积。

    用暴力全遍历直接求解即可。

    arr = [[ 8,  2, 22, 97, 38, 15,  0, 40,  0, 75,  4,  5,  7, 78, 52, 12, 50, 77, 91,  8],
           [49, 49, 99, 40, 17, 81, 18, 57, 60, 87, 17, 40, 98, 43, 69, 48,  4, 56, 62,  0],
           [81, 49, 31, 73, 55, 79, 14, 29, 93, 71, 40, 67, 53, 88, 30,  3, 49, 13, 36, 65],
           [52, 70, 95, 23,  4, 60, 11, 42, 69, 24, 68, 56,  1, 32, 56, 71, 37,  2, 36, 91],
           [22, 31, 16, 71, 51, 67, 63, 89, 41, 92, 36, 54, 22, 40, 40, 28, 66, 33, 13, 80],
           [24, 47, 32, 60, 99,  3, 45,  2, 44, 75, 33, 53, 78, 36, 84, 20, 35, 17, 12, 50],
           [32, 98, 81, 28, 64, 23, 67, 10, 26, 38, 40, 67, 59, 54, 70, 66, 18, 38, 64, 70],
           [67, 26, 20, 68,  2, 62, 12, 20, 95, 63, 94, 39, 63,  8, 40, 91, 66, 49, 94, 21],
           [24, 55, 58,  5, 66, 73, 99, 26, 97, 17, 78, 78, 96, 83, 14, 88, 34, 89, 63, 72],
           [21, 36, 23,  9, 75,  0, 76, 44, 20, 45, 35, 14,  0, 61, 33, 97, 34, 31, 33, 95],
           [78, 17, 53, 28, 22, 75, 31, 67, 15, 94,  3, 80,  4, 62, 16, 14,  9, 53, 56, 92],
           [16, 39,  5, 42, 96, 35, 31, 47, 55, 58, 88, 24,  0, 17, 54, 24, 36, 29, 85, 57],
           [86, 56,  0, 48, 35, 71, 89,  7,  5, 44, 44, 37, 44, 60, 21, 58, 51, 54, 17, 58],
           [19, 80, 81, 68,  5, 94, 47, 69, 28, 73, 92, 13, 86, 52, 17, 77,  4, 89, 55, 40],
           [ 4, 52,  8, 83, 97, 35, 99, 16,  7, 97, 57, 32, 16, 26, 26, 79, 33, 27, 98, 66],
           [88, 36, 68, 87, 57, 62, 20, 72,  3, 46, 33, 67, 46, 55, 12, 32, 63, 93, 53, 69],
           [ 4, 42, 16, 73, 38, 25, 39, 11, 24, 94, 72, 18,  8, 46, 29, 32, 40, 62, 76, 36],
           [20, 69, 36, 41, 72, 30, 23, 88, 34, 62, 99, 69, 82, 67, 59, 85, 74,  4, 36, 16],
           [20, 73, 35, 29, 78, 31, 90,  1, 74, 31, 49, 71, 48, 86, 81, 16, 23, 57,  5, 54],
           [ 1, 70, 54, 71, 83, 51, 54, 69, 16, 92, 33, 48, 61, 43, 52,  1, 89, 19, 67, 48]
    ]
    
    
    def prod4(i, j, inc_i, inc_j):
        prod = arr[i][j]
        for _ in range(3):
            i += inc_i
            j += inc_j
            if i < 0 or j < 0 or i >= 20 or j >=20:
                return 0
            prod *= arr[i][j]
        return prod
    
    
    max_prod = 0
    for i in range(20):
        for j in range(20):
            for (inc_i, inc_j) in [(1, 0), (0, 1), (1, 1), (1, -1)]:
                p = prod4(i, j, inc_i, inc_j)
                if p > max_prod:
                    #print(i, j, inc_i, inc_j)
                    max_prod = p
    
    print(max_prod)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44

    第12题 高度可约的三角形数

    三角形数数列是通过逐个加上自然数来生成的。例如,第7个三角形数是 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28。三角形数数列的前十项分别是:

    1, 3, 6, 10, 15, 21, 28, 36, 45, 55, …
    让我们列举出前七个三角形数的所有约数:

    1: 1
    3: 1,3
    6: 1,2,3,6
    10: 1,2,5,10
    15: 1,3,5,15
    21: 1,3,7,21
    28: 1,2,4,7,14,28
    我们可以看出,28是第一个拥有超过5个约数的三角形数。

    第一个拥有超过500个约数的三角形数是多少?

    先用笨办法把因子求出来,在找500个因子的三角形数的时候则非常非常慢。

    def tri_number(i):
        return i * (i + 1) // 2
    
    
    def factors(num):
        fac = filter(lambda x: num % x == 0, range(1, num+1))
        return list(fac)
    
    
    assert factors(1) == [1]
    assert factors(3) == [1, 3]
    assert factors(6) == [1, 2, 3, 6]
    assert factors(10) == [1, 2, 5, 10]
    assert factors(28) == [1, 2, 4, 7, 14, 28]
    
    
    def tri_num_have_factors(factors_num):
        i = 1
        while True:
            tri_num = tri_number(i)
            facs = factors(tri_num)
            if len(facs) > factors_num:
                return tri_num
            i += 1
    
    
    print(tri_num_have_factors(5))
    print(tri_num_have_factors(50))
    print(tri_num_have_factors(500))
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29

    优化一下算法,可以发现因子只需计算前一半就行,另外一半因子可以直接用除法计算出来。

    def tri_number(i):
        return i * (i + 1) // 2
    
    
    def half_factors(num):
        s = int(num ** 0.5)
        fac = filter(lambda x: num % x == 0, range(1, s+1))
        return list(fac)
    
    
    def factors(num):
        if num == 1:
            return [1]
        first_half = half_factors(num)
        second_half = [num // x for x in reversed(first_half)]
        return first_half + second_half
    
    
    assert factors(1) == [1]
    assert factors(3) == [1, 3]
    assert factors(6) == [1, 2, 3, 6]
    assert factors(10) == [1, 2, 5, 10]
    assert factors(28) == [1, 2, 4, 7, 14, 28]
    
    
    def tri_num_have_factors(factors_num):
        i = 1
        while True:
            tri_num = tri_number(i)
            facs = factors(tri_num)
            if len(facs) > factors_num:
                return tri_num
            i += 1
    
    
    print(tri_num_have_factors(5))
    print(tri_num_have_factors(50))
    print(tri_num_have_factors(500))
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38

    利用itertools可以改写while True那段循环:

    import itertools
    
    def tri_num_have_factors(factors_num):
        for i in itertools.count(1):
            tri_num = tri_number(i)
            facs = half_factors(tri_num)
            if len(facs) * 2 > factors_num:
                return tri_num
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

    还可以改成这样:

    import itertools
    
    def tri_num_have_factors(factors_num):
        tri_numbers = map(tri_number, itertools.count(1))
        seq = itertools.dropwhile(lambda n: len(half_factors(n)) * 2 <= factors_num, tri_numbers)
        return next(seq)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

    还可以变态地弄成一行:

    import itertools
    result = next(itertools.dropwhile(lambda n: len(list(filter(lambda x: n % x == 0, range(1, int(n ** 0.5)+1)))) * 2 <= 500, map(lambda i: i * (i + 1) // 2, itertools.count(1))))
    print(result)
    
    • 1
    • 2
    • 3

    对数学感兴趣的朋友,还利用因子的数学性质进一步优化,提高上千倍不止,这里不展开讨论了。

    第13题

    有100个长达50位的大整数,求和,只取前10位数字。

    numbers = [
        37107287533902102798797998220837590246510135740250,
        46376937677490009712648124896970078050417018260538,
        74324986199524741059474233309513058123726617309629,
        91942213363574161572522430563301811072406154908250,
        23067588207539346171171980310421047513778063246676,
        89261670696623633820136378418383684178734361726757,
        28112879812849979408065481931592621691275889832738,
        44274228917432520321923589422876796487670272189318,
        47451445736001306439091167216856844588711603153276,
        70386486105843025439939619828917593665686757934951,
        62176457141856560629502157223196586755079324193331,
        64906352462741904929101432445813822663347944758178,
        92575867718337217661963751590579239728245598838407,
        58203565325359399008402633568948830189458628227828,
        80181199384826282014278194139940567587151170094390,
        35398664372827112653829987240784473053190104293586,
        86515506006295864861532075273371959191420517255829,
        71693888707715466499115593487603532921714970056938,
        54370070576826684624621495650076471787294438377604,
        53282654108756828443191190634694037855217779295145,
        36123272525000296071075082563815656710885258350721,
        45876576172410976447339110607218265236877223636045,
        17423706905851860660448207621209813287860733969412,
        81142660418086830619328460811191061556940512689692,
        51934325451728388641918047049293215058642563049483,
        62467221648435076201727918039944693004732956340691,
        15732444386908125794514089057706229429197107928209,
        55037687525678773091862540744969844508330393682126,
        18336384825330154686196124348767681297534375946515,
        80386287592878490201521685554828717201219257766954,
        78182833757993103614740356856449095527097864797581,
        16726320100436897842553539920931837441497806860984,
        48403098129077791799088218795327364475675590848030,
        87086987551392711854517078544161852424320693150332,
        59959406895756536782107074926966537676326235447210,
        69793950679652694742597709739166693763042633987085,
        41052684708299085211399427365734116182760315001271,
        65378607361501080857009149939512557028198746004375,
        35829035317434717326932123578154982629742552737307,
        94953759765105305946966067683156574377167401875275,
        88902802571733229619176668713819931811048770190271,
        25267680276078003013678680992525463401061632866526,
        36270218540497705585629946580636237993140746255962,
        24074486908231174977792365466257246923322810917141,
        91430288197103288597806669760892938638285025333403,
        34413065578016127815921815005561868836468420090470,
        23053081172816430487623791969842487255036638784583,
        11487696932154902810424020138335124462181441773470,
        63783299490636259666498587618221225225512486764533,
        67720186971698544312419572409913959008952310058822,
        95548255300263520781532296796249481641953868218774,
        76085327132285723110424803456124867697064507995236,
        37774242535411291684276865538926205024910326572967,
        23701913275725675285653248258265463092207058596522,
        29798860272258331913126375147341994889534765745501,
        18495701454879288984856827726077713721403798879715,
        38298203783031473527721580348144513491373226651381,
        34829543829199918180278916522431027392251122869539,
        40957953066405232632538044100059654939159879593635,
        29746152185502371307642255121183693803580388584903,
        41698116222072977186158236678424689157993532961922,
        62467957194401269043877107275048102390895523597457,
        23189706772547915061505504953922979530901129967519,
        86188088225875314529584099251203829009407770775672,
        11306739708304724483816533873502340845647058077308,
        82959174767140363198008187129011875491310547126581,
        97623331044818386269515456334926366572897563400500,
        42846280183517070527831839425882145521227251250327,
        55121603546981200581762165212827652751691296897789,
        32238195734329339946437501907836945765883352399886,
        75506164965184775180738168837861091527357929701337,
        62177842752192623401942399639168044983993173312731,
        32924185707147349566916674687634660915035914677504,
        99518671430235219628894890102423325116913619626622,
        73267460800591547471830798392868535206946944540724,
        76841822524674417161514036427982273348055556214818,
        97142617910342598647204516893989422179826088076852,
        87783646182799346313767754307809363333018982642090,
        10848802521674670883215120185883543223812876952786,
        71329612474782464538636993009049310363619763878039,
        62184073572399794223406235393808339651327408011116,
        66627891981488087797941876876144230030984490851411,
        60661826293682836764744779239180335110989069790714,
        85786944089552990653640447425576083659976645795096,
        66024396409905389607120198219976047599490197230297,
        64913982680032973156037120041377903785566085089252,
        16730939319872750275468906903707539413042652315011,
        94809377245048795150954100921645863754710598436791,
        78639167021187492431995700641917969777599028300699,
        15368713711936614952811305876380278410754449733078,
        40789923115535562561142322423255033685442488917353,
        44889911501440648020369068063960672322193204149535,
        41503128880339536053299340368006977710650566631954,
        81234880673210146739058568557934581403627822703280,
        82616570773948327592232845941706525094512325230608,
        22918802058777319719839450180888072429661980811197,
        77158542502016545090413245809786882778948721859617,
        72107838435069186155435662884062257473692284509516,
        20849603980134001723930671666823555245252804609722,
        53503534226472524250874054075591789781264330331690,
    ]
    
    first10 = str(sum(numbers))[:10]
    print(first10)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105

    第14题 Collatz序列

    Collatz序列的意思是,当一个数n是偶数时,下一数为n/2;当n为奇数时,下一个数为3*n+1。
    这种序列有一个猜想,最后都会收敛于4,2,1。例如:
    13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1
    从100万之内挑一个数作为起始数,生成Collatz序列,哪个生成的链最长?

    def collatz_len(x):
        if x == 1:
            return 1
    
        y = x * 3 + 1 if x % 2 else x // 2
        return collatz_len(y) + 1
    
    
    max_collatz = 0
    result = 0
    for n in range(1, 1_000_000):
        c = collatz_len(n)
        if c > max_collatz:
            max_collatz = c
            result = n
            print(n, max_collatz)
    
    
    print(result)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19

    可以缓存一些结果,避免一些重复计算。

    cache = {}
    
    def collatz_len(x):
        if x == 1:
            return 1
    
        if x in cache:
            return cache[x]
        
        y = x * 3 + 1 if x % 2 else x // 2
        ret = collatz_len(y) + 1
        cache[x] = ret
        return ret
    
    
    max_collatz = 0
    result = 0
    for n in range(1, 1_000_000):
        c = collatz_len(n)
        if c > max_collatz:
            max_collatz = c
            result = n
            print(n, max_collatz)
    
    
    print(result)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26

    第15题

    第15题 网格路径
    已知2x2网格中从左上角到右下角共有6条可能路径,计算20x20网格中,有多少条可能的路径。

    在这里插入图片描述

    解:
    还是用递归的思路。对于m行n列的网格,可以利用其它网格的路径个数的结果,即:
    P(m,n) = P(m-1,n) + P(m-1,n-1) + … + P(m-1,1) + P(m-1,0)
    对于0行或者0列的网格,路径只有1条。

    在这里插入图片描述
    代码并不难:

    def path_slow(m, n):
        if m == 0 or n == 0:
            return 1
    
        s = 0
        for j in range(n+1):
            s += path_slow(m-1, j)
    
        return s
    
    
    print(path_slow(12, 12))
    print(path_slow(20, 20))   
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13

    求和那几行语句,还可以用列表推导式写成一行:
    s = sum([path_slow(m-1, j) for j in range(n+1)])

    但递归的代价有点大,程序性能很差,12x12网格很快可以搞定,但20x20就非常吃力了。
    加上缓存,则性能改善非常非常大。

    cache = {}
    
    def path_fast(m, n):
        if m == 0 or n == 0:
            return 1
    
        if (m, n) in cache:
            return cache[(m, n)]
        
        s = sum([path_fast(m-1, j) for j in range(n+1)])
        cache[(m, n)]  = s
        return s
    
    
    print(path_fast(20, 20))  
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
  • 相关阅读:
    复盘-PPT
    三十分钟让你学会正则表达式
    第16章、 string类和标准模板库
    JavaEE——Session会话追踪的实现机制
    【zip密码】Zip压缩包删除密码方法
    解析异常SAXParseExceptionis如何处理
    2023年中国GPS导航设备产量、销量及市场规模分析[图]
    folly::ConcurrentSkipList 详解
    66-86-javajvm-堆
    anime动画库
  • 原文地址:https://blog.csdn.net/slofslb/article/details/126035382