给你一个下标从 0 开始、严格递增 的整数数组 nums 和一个正整数 diff 。如果满足下述全部条件,则三元组 (i, j, k) 就是一个 算术三元组 :
i < j < k ,
nums[j] - nums[i] == diff 且
nums[k] - nums[j] == diff
返回不同 算术三元组 的数目。
示例 1:
输入:nums = [0,1,4,6,7,10], diff = 3
输出:2
解释:
(1, 2, 4) 是算术三元组:7 - 4 == 3 且 4 - 1 == 3 。
(2, 4, 5) 是算术三元组:10 - 7 == 3 且 7 - 4 == 3 。
示例 2:
输入:nums = [4,5,6,7,8,9], diff = 2
输出:2
解释:
(0, 2, 4) 是算术三元组:8 - 6 == 2 且 6 - 4 == 2 。
(1, 3, 5) 是算术三元组:9 - 7 == 2 且 7 - 5 == 2 。
提示:
3 <= nums.length <= 200
0 <= nums[i] <= 200
1 <= diff <= 50
nums 严格 递增
思路:
三重循环暴力出结果,因为数组是严格递增的,因此可以进行优化
- int arithmeticTriplets(int* nums, int numsSize, int diff){
- int ans = 0;
- for(int i = 0; i < numsSize - 2; i++){
- for(int j = i + 1; j < numsSize; j++){
- if(nums[j] - nums[i] == diff){
- for(int k = j + 1; k < numsSize; k++){
- if(nums[k] - nums[j] == diff){
- ans++;
- }
- if(nums[k] - nums[j] > diff) //数组是递增的,所以nums[k] - nums[j]的差也是递增的,当差值大于diff时后面的就没必要比较了
- break;
- }
- }
- if(nums[j] - nums[i] > diff) //nums[j] - nums[i]大于diff时,以后的结果也会大于diff
- break;
- }
- }
- return ans;
- }