本文为[365天深度学习训练营]https://blog.csdn.net/qq_38251616/category_11951628.html中的学习博客。
今天学习博客,参考文章地址:深度学习100例-卷积神经网络(CNN)服装图像分类 | 第3天_K同学啊的博客-CSDN博客
活动地址:CSDN21天学习挑战赛
一、原理
CNN卷积神经网络主要执行了四个操作:卷积、非线性(ReLU)、池化或下采样、分类(全连接层)。
二、过程
1.导入库和数据集
- import tensorflow as tf
- from tensorflow.keras import datasets, layers, models
- import matplotlib.pyplot as plt
-
- (train_images, train_labels), (test_images, test_labels) = datasets.fashion_mnist.load_data()

2.归一化
- # 将像素的值标准化至0到1的区间内。
- train_images, test_images = train_images / 255.0, test_images / 255.0
-
- train_images.shape,test_images.shape,train_labels.shape,test_labels.shape

图片是28*28,像素值介于0~255,标签是整数数组,介于0~9。print(a.shape) #输出数组的形状,逗号表示是一个元组。
3.调整图片格式
- #调整数据到我们需要的格式
- train_images = train_images.reshape((60000, 28, 28, 1))
- test_images = test_images.reshape((10000, 28, 28, 1))
-
- train_images.shape,test_images.shape,train_labels.shape,test_labels.shape

使用reshape改变数组,不改变当前数组,按照shape创建新的数组。从三维到四维数组,意义是什么?
4.可视化
- class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
- 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
-
- plt.figure(figsize=(20,10))
- for i in range(20):
- plt.subplot(5,10,i+1)
- plt.xticks([])
- plt.yticks([])
- plt.grid(False)
- plt.imshow(train_images[i],cmap='gray')
- plt.xlabel(class_names[train_labels[i]])
- plt.show()

5.构建CNN网络
- model = models.Sequential([
- layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)), #卷积层1,卷积核3*3
- layers.MaxPooling2D((2, 2)), #池化层1,2*2采样
- layers.Conv2D(64, (3, 3), activation='relu'), #卷积层2,卷积核3*3
- layers.MaxPooling2D((2, 2)), #池化层2,2*2采样
- layers.Conv2D(64, (3, 3), activation='relu'), #卷积层3,卷积核3*3
-
- layers.Flatten(), #Flatten层,连接卷积层与全连接层
- layers.Dense(64, activation='relu'), #全连接层,特征进一步提取
- layers.Dense(10) #输出层,输出预期结果
- ])
-
- model.summary() # 打印网络结构

6.编译
- model.compile(optimizer='adam',
- loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
- metrics=['accuracy'])
7.训练模型
- history = model.fit(train_images, train_labels, epochs=10,
- validation_data=(test_images, test_labels))

8.显示测试集某一张图片
plt.imshow(test_images[1])

9.预测
- import numpy as np
-
- pre = model.predict(test_images)
- print(class_names[np.argmax(pre[1])])
-

10.模型评估(不知道为啥会报错)
- plt.plot(history.history['acc'], label='acc')
- plt.plot(history.history['val_acc'], label = 'val_acc')
- plt.xlabel('Epoch')
- plt.ylabel('Accuracy')
- plt.ylim([0.5, 1])
- plt.legend(loc='lower right')
- plt.show()
-
- test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)

11.测试准确率
print("测试准确率为:",test_acc)

三、总结