本系列为TI(Texas Instruments) mmWave radar sensors 系列视频公开课 的学习笔记。
视频网址: https://training.ti.com/intro-mmwave-sensing-fmcw-radars-module-1-range-estimation?context=1128486-1139153-1128542
关注 下面的公众号,回复“ TI毫米波 ”,即可获取 本系列完整的pdf笔记文件~
内容在CSDN和微信公众号同步更新

- 笔记难免存在问题,欢迎联系指正
FMCW Radars – Module 1 : Range Estimation
FMCW Radars – Module 2 : The Phase of the IF Signal
FMCW Radars – Module 3 : Velocity Estimation
FMCW Radars – Module 4 : Some System Design Topics
FMCW Radars – Module 5 : Angle Estimation
之前:
- Range and Velocity Estimation
This Module:
结合之前知识,design a transimitted signal ⇒ \Rightarrow ⇒ meets the specified requirements (range resolution, max range, velocity resolution, max velocity) ⇒ \Rightarrow ⇒ fell the trade-offs
Radar range equation (maximum distance)
in a nutshell 简而言之

step 1: ADC data matrix
Step 2: Range FFT
Perform on each row
✅ resolves objects in range
✅ e.g., 两个有阴影的range bin 表示 这两个距离处有物体
❗ the x-axis is actually the frequency corresponding to the range FFT bins ⇒ \Rightarrow ⇒ 但可以转换为range
Step 3: Doppler FFT
2D FFT : Step 2 + Step 3
Note :
In most implementations, the range-FFT is done inline prior to storing the ADC samples into memory
即先range FFT再Doppler FFT, 需要有memory 存储 RangeFFT的中间结果
Formulas:
Q: Given range resolution ( d r e s d_{res} dres), max range( d m a x d_{max} dmax), velocity resolution ( v r e s v_{res} vres), max velocity ( v m a x v_{max} vmax), how to design a frame ?

Note:
However, 还没有用上 F i f _ m a x = S 2 d m a x c F_{if\_max} = \frac{S2d_{max}}{c} Fif_max=cS2dmax (所需要的IF bandwidth)
通常默认硬件能够提供足够的 F i f F_{if} Fif (中频频率)
给定 d m a x d_{max} dmax, the maximum required IF bandwidth might not be supported by the device
❗ Since F i f _ m a x = S 2 d m a x c F_{if\_max} = \frac{S2d_{max}}{c} Fif_max=cS2dmax, 需要在 S S S 和 d m a x d_{max} dmax 进行trade-off
The device must be able to generate the required Slope S S S
❌ Each device has a limit on the maximum slope of the chirp that the syntesizer can generate
Device specific requirements for idle time between adjacent chirps need to be honored
❌ Interchirp idle time to allow the synth to ramp down after each chirp (如下图)
Device must have sufficient memory to store the range-FFT data for all the chirps in the frame
❗ Note that rangeFFT data for all the chirps in the frame must be stored before Doppler-FFT computation can start

短距雷达 VS 长距雷达
The product S × d m a x S\times d_{max} S×dmax is limited by the available IF bandwidth in the device
Hence as d m a x d_{max} dmax increases ⇒ \Rightarrow ⇒ S S S has to be decreased
Assuming v c v_c vc固定,即 T c T_c Tc is frozen, then
因此,for a given T c T_c Tc:

P t P_t Pt: Output power of device
Radiated Power Density = P t G T X 4 π d 2 \frac{P_t G_{TX}}{4 \pi d^2} 4πd2PtGTX W / m 2 W/m^2 W/m2
Power reflected by object:
= P t G T X σ 4 π d 2 = \frac{P_t G_{TX} \sigma}{4\pi d^2} =4πd2PtGTXσ
where σ \sigma σ: Radar Cross Section of the Target (RCS)
▪ RCS: basically a measure of the target’s ability to reflect radar signals in the direction of the radar receiver
Power density at RX ant
Power captured at RX ant
S N R = σ P t G T X G R X λ 2 T m e a n s ( 4 π ) 3 d 4 k T F SNR = \frac{\sigma P_t G_{TX} G_{RX} \lambda^2 T_{means}}{(4\pi)^3 d^4 kTF} SNR=(4π)3d4kTFσPtGTXGRXλ2Tmeans
T m e a n s T_{means} Tmeans : Total measurement time ( N T c NT_c NTc)
k T kT kT : Thermal noise at the receiver
k k k : Boltzman constant
T T T : Antenna temperature
Note1: measurement time T m e a s ↑ T_{meas} \uparrow Tmeas↑ ⇒ \Rightarrow ⇒ SNR ↑ \uparrow ↑
🚩 Because the signal is deterministic while the noise is random
There is a minimum SNR (SNR m i n _{min} min) required for detecting a target
Given a S N R m i n SNR_{min} SNRmin, the maximum distance can be computed as:
