• TI mmWave radar sensors Tutorial 笔记 | Module 4 : Some System Design Topics


    本系列为TI(Texas Instruments) mmWave radar sensors 系列视频公开课 的学习笔记。

    • 视频网址: https://training.ti.com/intro-mmwave-sensing-fmcw-radars-module-1-range-estimation?context=1128486-1139153-1128542

    • 关注 下面的公众号,回复“ TI毫米波 ”,即可获取 本系列完整的pdf笔记文件~


    内容在CSDN和微信公众号同步更新

    在这里插入图片描述

    • 笔记难免存在问题,欢迎联系指正

    FMCW Radars – Module 1 : Range Estimation
    FMCW Radars – Module 2 : The Phase of the IF Signal
    FMCW Radars – Module 3 : Velocity Estimation
    FMCW Radars – Module 4 : Some System Design Topics
    FMCW Radars – Module 5 : Angle Estimation

    Module 4 Some System Design topics

    • Content
      • 2D-FFT Processing
      • Trade-offs involved in designing a frame
      • Radar range equation

    之前:

    • Range and Velocity Estimation

    This Module:

    • 结合之前知识,design a transimitted signal ⇒ \Rightarrow meets the specified requirements (range resolution, max range, velocity resolution, max velocity) ⇒ \Rightarrow fell the trade-offs

    • Radar range equation (maximum distance)

    FMCW 2D FFT processing in a nutshell

    in a nutshell 简而言之

    • 距离、速度估计 (Range-Doppler Heatmap) 流程 如下图

    picture 1

    • step 1: ADC data matrix

      • Each row: ADC samples in one chirp
      • Different rows: chirps in one frame
    • Step 2: Range FFT

      • Perform on each row

        ✅ resolves objects in range

        ✅ e.g., 两个有阴影的range bin 表示 这两个距离处有物体

        ❗ the x-axis is actually the frequency corresponding to the range FFT bins ⇒ \Rightarrow 但可以转换为range

    • Step 3: Doppler FFT

      • Perform along the columns of the rangeFFT results
      • from the results: can see that the third range bin has two objects at different velocities and
      • the Y axis: ⇒ \Rightarrow actually the discrete angle of frequencies corresponding to the FFT ⇒ \Rightarrow proportional to the velocity

    2D FFT : Step 2 + Step 3

    Note :

    In most implementations, the range-FFT is done inline prior to storing the ADC samples into memory

    先range FFT再Doppler FFT, 需要有memory 存储 RangeFFT的中间结果

    Mapping requirements to chirp parameters

    • Formulas:

      • v m a x = λ 4 T c v_{max} = \frac{\lambda}{4 T_c} vmax=4Tcλ
      • v r e s = λ 2 T f v_{res} = \frac{\lambda}{2 T_f} vres=2Tfλ
      • d r e s = c 2 B d_{res} = \frac{c}{2B} dres=2Bc
      • F i f _ m a x = S 2 d m a x c F_{if\_max} = \frac{S2d_{max}}{c} Fif_max=cS2dmax (所需要的IF bandwidth)
    • Q: Given range resolution ( d r e s d_{res} dres), max range( d m a x d_{max} dmax), velocity resolution ( v r e s v_{res} vres), max velocity ( v m a x v_{max} vmax), how to design a frame ?

      • T c T_c Tc determined using v m a x v_{max} vmax
      • B B B determined using d r e s d_{res} dres
      • S S S is determined by S = B / T c S = B/T_{c} S=B/Tc
      • T f T_f Tf (frame time) can be determined using v r e s v_{res} vres
      • ⇒ \Rightarrow 至此,确定了整个frame,如下图

    picture 2

    Note:

    • However, 还没有用上 F i f _ m a x = S 2 d m a x c F_{if\_max} = \frac{S2d_{max}}{c} Fif_max=cS2dmax (所需要的IF bandwidth)

    • 通常默认硬件能够提供足够的 F i f F_{if} Fif (中频频率)

    • In practice, 决定chirp parameters 参数的过程 会更加复杂、more iterative
      • 给定 d m a x d_{max} dmax, the maximum required IF bandwidth might not be supported by the device

        ❗ Since F i f _ m a x = S 2 d m a x c F_{if\_max} = \frac{S2d_{max}}{c} Fif_max=cS2dmax, 需要在 S S S d m a x d_{max} dmax 进行trade-off

      • The device must be able to generate the required Slope S S S

        ❌ Each device has a limit on the maximum slope of the chirp that the syntesizer can generate

      • Device specific requirements for idle time between adjacent chirps need to be honored

        ❌ Interchirp idle time to allow the synth to ramp down after each chirp (如下图)

      • Device must have sufficient memory to store the range-FFT data for all the chirps in the frame

        ❗ Note that rangeFFT data for all the chirps in the frame must be stored before Doppler-FFT computation can start

    picture 3


    短距雷达 VS 长距雷达

    • The product S × d m a x S\times d_{max} S×dmax is limited by the available IF bandwidth in the device

    • Hence as d m a x d_{max} dmax increases ⇒ \Rightarrow S S S has to be decreased

    • Assuming v c v_c vc固定,即 T c T_c Tc is frozen, then

      • d m a x d_{max} dmax increases ⇒ \Rightarrow S S S has to be decreased ⇒ \Rightarrow smaller B B B ⇒ \Rightarrow poorer range resolution
    • 因此,for a given T c T_c Tc:

      • A short range radar : higher slope and a larger B B B ( ⇒ \Rightarrow better resolution)
      • A long range radar : lower slpoe and a smaller chirp bandwidth

    picture 4


    The Radar Rnage Equation

    • P t P_t Pt: Output power of device

    • Radiated Power Density = P t G T X 4 π d 2 \frac{P_t G_{TX}}{4 \pi d^2} 4πd2PtGTX W / m 2 W/m^2 W/m2

      • G T X G_{TX} GTX: TX antenna gain ⇒ \Rightarrow 通常通过 increasing its directivity 实现
      • Concentrating the output power from the device over a narrower field of view
    • Power reflected by object:

      • = P t G T X σ 4 π d 2 = \frac{P_t G_{TX} \sigma}{4\pi d^2} =4πd2PtGTXσ

      • where σ \sigma σ: Radar Cross Section of the Target (RCS)

        ▪ RCS: basically a measure of the target’s ability to reflect radar signals in the direction of the radar receiver

    • Power density at RX ant

      • = P t G T X σ ( 4 π ) 2 d 4 =\frac{P_t G_{TX} \sigma}{(4\pi)^2 d^4} =(4π)2d4PtGTXσ W / m 2 W/m^2 W/m2
    • Power captured at RX ant

      • = P t G T X σ A R X ( 4 π ) 2 d 4 =\frac{P_t G_{TX} \sigma A_{RX}}{(4\pi)^2 d^4} =(4π)2d4PtGTXσARX
      • A R X A_{RX} ARX : Effective aperture area of RX antenna ⇒ \Rightarrow $A_{RX} = \frac{G_{RX} \lambda^2}{4 \pi} $
      • ⇒ \Rightarrow = P t G T X σ G R X λ 2 ( 4 π ) 3 d 4 =\frac{P_t G_{TX} \sigma G_{RX} \lambda^2}{(4\pi)^3 d^4} =(4π)3d4PtGTXσGRXλ2
    • S N R = σ P t G T X G R X λ 2 T m e a n s ( 4 π ) 3 d 4 k T F SNR = \frac{\sigma P_t G_{TX} G_{RX} \lambda^2 T_{means}}{(4\pi)^3 d^4 kTF} SNR=(4π)3d4kTFσPtGTXGRXλ2Tmeans

      • T m e a n s T_{means} Tmeans : Total measurement time ( N T c NT_c NTc)

      • k T kT kT : Thermal noise at the receiver

      • k k k : Boltzman constant

      • T T T : Antenna temperature

      • Note1: measurement time T m e a s ↑ T_{meas} \uparrow Tmeas ⇒ \Rightarrow SNR ↑ \uparrow

        🚩 Because the signal is deterministic while the noise is random

    • There is a minimum SNR (SNR m i n _{min} min) required for detecting a target

      • Choice of S N R m i n SNR_{min} SNRmin : trade-off between probability of 漏检 (Missed detections)probability of 虚警 (False alarms) .
      • Typical numbers: 15 d B 15dB 15dB ~ 20 d B 20dB 20dB
    • Given a S N R m i n SNR_{min} SNRmin, the maximum distance can be computed as:

      • d max ⁡ = ( σ P t G T X G R X λ 2 T meas  ( 4 π ) 3 S N R min ⁡ k T F ) 1 4 \mathrm{d}_{\max }=\left(\frac{\sigma P_{t} G_{T X} G_{R X} \lambda^{2} T_{\text {meas }}}{(4 \pi)^{3} S N R_{\min } k T F}\right)^{\frac{1}{4}} dmax=((4π)3SNRminkTFσPtGTXGRXλ2Tmeas )41
      • 其中 T m e a s T_{meas} Tmeas can be incorporated while designing the tranmit signal
      • Others are decided by hardware

    Epilogue

    • Two objects equidistant from the radar and with the same velocity relative to the radar
      • How will the range-velocity plot look like?
      • Ans: Single Peak

    picture 5

    • How to separate those two objects?
      • Next module: Angle Estimtion
  • 相关阅读:
    【编程题 】HJ64 MP3光标位置(详细注释 易懂)
    持续集成部署 - Jenkinsfile中单双引号的区别
    腾讯插件化框架shadow
    原生js+css制作--可以弹奏的吉他
    带有流光的折线图
    VScode 调试python程序,debug状态闪断问题的解决方法
    【刷题笔记9.25】LeetCode:合并二叉树
    【YOLO系列】YOLO.v3算法原理详解
    windows C++-在 C++/WinRT 中使用委托处理事件(下)
    Python---数据序列中的公共方法
  • 原文地址:https://blog.csdn.net/qazwsxrx/article/details/126189920