(
1
)
d
x
=
_
_
d
(
a
x
)
;
(
2
)
d
x
=
_
_
d
(
7
x
−
3
)
;
(
3
)
x
d
x
=
_
_
d
(
x
2
)
;
(
4
)
x
d
x
=
_
_
d
(
5
x
2
)
;
(
5
)
x
d
x
=
_
_
d
(
1
−
x
2
)
;
(
6
)
x
3
d
x
=
_
_
d
(
3
x
4
−
2
)
;
(
7
)
e
2
x
d
x
=
_
_
d
(
e
2
x
)
;
(
8
)
e
−
x
2
d
x
=
_
_
d
(
1
+
e
−
x
2
)
;
(
9
)
s
i
n
3
2
x
d
x
=
_
_
d
(
c
o
s
3
2
x
)
;
(
10
)
d
x
x
=
_
_
d
(
5
l
n
∣
x
∣
)
;
(
11
)
d
x
x
=
_
_
d
(
3
−
5
l
n
∣
x
∣
)
;
(
12
)
d
x
1
+
9
x
2
=
_
_
d
(
a
r
c
t
a
n
3
x
)
;
(
13
)
d
x
1
−
x
2
=
_
_
d
(
1
−
a
r
c
s
i
n
x
)
;
(
14
)
x
d
x
1
−
x
2
=
_
_
d
(
1
−
x
2
)
.
(1) dx=__d(ax); (2) dx=__d(7x−3); (3) xdx=__d(x2); (4) xdx=__d(5x2); (5) xdx=__d(1−x2); (6) x3dx=__d(3x4−2); (7) e2xdx=__d(e2x); (8) e−x2dx=__d(1+e−x2); (9) sin 32xdx=__d(cos 32x); (10) dxx=__d(5ln |x|); (11) dxx=__d(3−5ln |x|); (12) dx1+9x2=__d(arctan 3x); (13) dx√1−x2=__d(1−arcsin x); (14) xdx√1−x2=__d(√1−x2).
(
1
)
d
x
=
1
a
d
(
a
x
)
(
2
)
d
x
=
1
7
d
(
7
x
−
3
)
(
3
)
x
d
x
=
1
2
d
(
x
2
)
(
4
)
x
d
x
=
1
10
d
(
5
x
2
)
(
5
)
x
d
x
=
−
1
2
d
(
1
−
x
2
)
(
6
)
x
3
d
x
=
1
12
d
(
3
x
4
−
2
)
(
7
)
e
2
x
d
x
=
1
2
d
(
e
2
x
)
(
8
)
e
x
2
d
x
=
−
2
d
(
1
+
e
x
2
)
(
9
)
s
i
n
3
2
x
d
x
=
−
2
3
d
(
c
o
s
3
2
x
)
(
10
)
d
x
x
=
1
5
d
(
5
l
n
∣
x
∣
)
(
11
)
d
x
x
=
−
1
5
d
(
3
−
5
l
n
∣
x
∣
)
(
12
)
d
x
1
+
9
x
2
=
1
3
d
(
a
r
c
t
a
n
3
x
)
(
13
)
d
x
1
−
x
2
=
−
d
(
1
−
a
r
c
s
i
n
x
)
(
14
)
x
d
x
1
−
x
2
=
−
d
(
1
−
x
2
)
(1) dx=1ad(ax) (2) dx=17d(7x−3) (3) xdx=12d(x2) (4) xdx=110d(5x2) (5) xdx=−12d(1−x2) (6) x3dx=112d(3x4−2) (7) e2xdx=12d(e2x) (8) ex2dx=−2d(1+ex2) (9) sin 32xdx=−23d(cos 32x) (10) dxx=15d(5ln |x|) (11) dxx=−15d(3−5ln |x|) (12) dx1+9x2=13d(arctan 3x) (13) dx√1−x2=−d(1−arcsin x) (14) xdx√1−x2=−d(√1−x2)
(
1
)
∫
e
5
t
d
t
;
(
2
)
∫
(
3
−
2
x
)
3
d
x
;
(
3
)
∫
d
x
1
−
2
x
;
(
4
)
∫
d
x
2
−
3
x
3
;
(
5
)
∫
(
s
i
n
a
x
−
e
x
b
)
d
x
;
(
6
)
∫
s
i
n
t
t
d
t
;
(
7
)
∫
x
e
−
x
2
d
x
;
(
8
)
∫
x
c
o
s
(
x
2
)
d
x
;
(
9
)
∫
x
2
−
3
x
2
d
x
;
(
10
)
∫
3
x
3
1
−
x
4
d
x
;
(
11
)
∫
x
+
1
x
2
+
2
x
+
5
d
x
;
(
12
)
∫
c
o
s
2
(
ω
t
+
φ
)
s
i
n
(
ω
t
+
φ
)
d
t
;
(
13
)
∫
s
i
n
x
c
o
s
3
x
d
x
;
(
14
)
∫
s
i
n
x
+
c
o
s
x
s
i
n
x
−
c
o
s
x
3
d
x
;
(
15
)
∫
t
a
n
10
x
⋅
s
e
c
2
x
d
x
;
(
16
)
∫
d
x
x
l
n
x
l
n
l
n
x
;
(
17
)
∫
d
x
(
a
r
c
s
i
n
x
)
2
1
−
x
2
;
(
18
)
∫
1
0
2
a
r
c
c
o
s
x
1
−
x
2
d
x
;
(
19
)
∫
t
a
n
1
+
x
2
⋅
x
d
x
1
+
x
2
;
(
20
)
∫
a
r
c
t
a
n
x
x
(
1
+
x
)
d
x
;
(
21
)
∫
1
+
l
n
x
(
x
l
n
x
)
2
d
x
;
(
22
)
∫
d
x
s
i
n
x
c
o
s
x
;
(
23
)
∫
l
n
t
a
n
x
c
o
s
x
s
i
n
x
d
x
;
(
24
)
∫
c
o
s
3
x
d
x
;
(
25
)
∫
c
o
s
2
(
ω
t
+
φ
)
d
t
;
(
26
)
∫
s
i
n
2
x
c
o
s
3
x
d
x
;
(
27
)
∫
c
o
s
x
c
o
s
x
2
d
x
;
(
28
)
∫
s
i
n
5
x
s
i
n
7
x
d
x
;
(
29
)
∫
t
a
n
3
x
s
e
c
x
d
x
;
(
30
)
∫
d
x
e
x
+
e
−
x
;
(
31
)
∫
1
−
x
9
−
4
x
2
d
x
;
(
32
)
∫
x
3
9
+
x
2
d
x
;
(
33
)
∫
d
x
2
x
2
−
1
d
x
;
(
34
)
∫
d
x
(
x
+
1
)
(
x
−
2
)
;
(
35
)
∫
x
x
2
−
x
−
2
d
x
;
(
36
)
∫
x
2
d
x
a
2
−
x
2
(
a
>
0
)
;
(
37
)
∫
d
x
x
x
2
−
1
;
(
38
)
∫
d
x
(
x
2
+
1
)
3
;
(
39
)
∫
x
2
−
9
x
d
x
;
(
40
)
∫
d
x
1
+
2
x
;
(
41
)
∫
d
x
1
+
1
−
x
2
;
(
42
)
∫
d
x
x
+
1
−
x
2
;
(
43
)
∫
x
−
1
x
2
+
2
x
+
3
d
x
;
(
44
)
∫
x
3
+
1
(
x
2
+
1
)
2
d
x
(1) ∫e5tdt; (2) ∫(3−2x)3dx; (3) ∫dx1−2x; (4) ∫dx3√2−3x; (5) ∫(sin ax−exb)dx; (6) ∫sin √t√tdt; (7) ∫xe−x2dx; (8) ∫xcos(x2)dx; (9) ∫x√2−3x2dx; (10) ∫3x31−x4dx; (11) ∫x+1x2+2x+5dx; (12) ∫cos2(ωt+φ)sin(ωt+φ)dt; (13) ∫sin xcos3 xdx; (14) ∫sin x+cos x3√sin x−cos xdx; (15) ∫tan10 x⋅sec2 xdx; (16) ∫dxxln xln ln x; (17) ∫dx(arcsin x)2√1−x2; (18) ∫102arccos x√1−x2dx; (19) ∫tan√1+x2⋅xdx√1+x2; (20) ∫arctan√x√x(1+x)dx; (21) ∫1+ln x(xln x)2dx; (22) ∫dxsin xcos x; (23) ∫ln tan xcos xsin xdx; (24) ∫cos3 xdx; (25) ∫cos2(ωt+φ)dt; (26) ∫sin 2xcos 3xdx; (27) ∫cos xcos x2dx; (28) ∫sin 5xsin 7xdx; (29) ∫tan3 xsec xdx; (30) ∫dxex+e−x; (31) ∫1−x√9−4x2dx; (32) ∫x39+x2dx; (33) ∫dx2x2−1dx; (34) ∫dx(x+1)(x−2); (35) ∫xx2−x−2dx; (36) ∫x2dx√a2−x2 (a>0); (37) ∫dxx√x2−1; (38) ∫dx√(x2+1)3; (39) ∫√x2−9xdx; (40) ∫dx1+√2x; (41) ∫dx1+√1−x2; (42) ∫dxx+√1−x2; (43) ∫x−1x2+2x+3dx; (44) ∫x3+1(x2+1)2dx
(
1
)
令
u
=
5
t
,由第一类换元法得
∫
e
5
t
d
t
=
1
5
∫
e
u
d
u
=
1
5
e
5
t
+
C
.
(
2
)
令
u
=
3
−
2
x
,由第一类换元法得
∫
(
3
−
2
x
)
3
d
x
=
−
1
2
∫
u
3
d
u
=
−
1
8
(
3
−
2
x
)
4
+
C
(
3
)
令
u
=
1
−
2
x
,由第一类换元法得
∫
d
x
1
−
2
x
=
−
1
2
∫
1
u
d
u
=
−
1
2
l
n
∣
1
−
2
x
∣
+
C
(
4
)
令
u
=
2
−
3
x
,由第一类换元法得
∫
d
x
2
−
3
x
3
=
−
1
3
∫
u
−
1
3
d
u
=
−
1
2
(
2
−
3
x
)
2
3
+
C
(
5
)
∫
(
s
i
n
a
x
−
e
x
b
)
d
x
=
∫
s
i
n
a
x
d
x
−
∫
e
x
b
d
x
=
1
a
∫
s
i
n
a
x
d
(
a
x
)
−
b
∫
e
x
b
d
(
x
b
)
=
−
1
a
c
o
s
a
x
−
b
e
x
b
+
C
(
6
)
令
u
=
t
,由第一类换元法得
∫
s
i
n
t
t
d
t
=
∫
s
i
n
u
u
⋅
2
u
d
u
=
2
∫
s
i
n
u
d
u
=
−
2
c
o
s
t
+
C
(
7
)
令
u
=
−
x
2
,由第一类换元法得
∫
x
e
−
x
2
d
x
=
∫
−
u
e
u
⋅
(
−
1
2
−
u
)
d
u
=
−
1
2
∫
e
u
d
u
=
−
1
2
e
−
x
2
+
C
(
8
)
令
u
=
x
2
,由第一类换元法得
∫
x
c
o
s
(
x
2
)
d
x
=
∫
u
c
o
s
u
⋅
1
2
u
d
u
=
1
2
∫
c
o
s
u
d
u
=
1
2
s
i
n
(
x
2
)
+
C
(
9
)
令
u
=
2
−
3
x
2
,由第一类换元法得
∫
x
2
−
3
x
2
d
x
=
∫
2
−
u
3
⋅
1
u
⋅
(
−
1
6
2
−
u
3
)
d
u
=
−
1
6
∫
u
−
1
2
d
u
=
−
1
3
2
−
3
x
2
+
C
(
10
)
令
u
=
1
−
x
4
,得
∫
3
x
3
1
−
x
4
d
x
=
∫
3
(
1
−
u
)
3
4
u
⋅
−
1
4
(
1
−
u
)
3
4
d
u
=
−
3
4
∫
1
u
d
u
=
−
3
4
l
n
∣
1
−
x
4
∣
+
C
(
11
)
令
u
=
x
2
+
2
x
+
5
,得
∫
x
+
1
x
2
+
2
x
+
5
d
x
=
∫
u
−
4
u
⋅
1
2
u
−
4
d
u
=
1
2
∫
1
u
d
u
=
1
2
l
n
(
x
2
+
2
x
+
5
)
+
C
(
12
)
令
u
=
c
o
s
(
ω
t
+
φ
)
,得
∫
c
o
s
2
(
ω
t
+
φ
)
s
i
n
(
ω
t
+
φ
)
d
t
=
−
1
ω
∫
u
2
d
u
=
−
1
3
ω
c
o
s
3
(
ω
t
+
φ
)
+
C
(
13
)
令
u
=
c
o
s
x
,得
∫
s
i
n
x
c
o
s
3
x
d
x
=
−
∫
1
u
3
d
u
=
1
2
c
o
s
2
x
+
C
(
14
)
令
u
=
s
i
n
x
−
c
o
s
x
,得
∫
s
i
n
x
+
c
o
s
x
s
i
n
x
−
c
o
s
x
3
d
x
=
∫
u
−
1
3
d
u
=
3
2
(
s
i
n
x
−
c
o
s
x
)
2
3
+
C
(
15
)
令
u
=
t
a
n
x
,得
∫
t
a
n
10
x
⋅
s
e
c
2
x
d
x
=
∫
u
10
d
u
=
1
11
t
a
n
11
x
+
C
(
16
)
令
u
=
l
n
x
,得
∫
d
x
x
l
n
x
l
n
l
n
x
=
∫
e
u
e
u
⋅
u
⋅
l
n
u
d
u
=
∫
1
u
l
n
u
d
u
,
令
t
=
l
n
u
,得
∫
1
u
l
n
u
d
u
=
∫
e
t
e
t
⋅
t
d
t
=
∫
1
t
d
t
=
l
n
∣
l
n
u
∣
+
C
=
l
n
∣
l
n
l
n
x
∣
+
C
(
17
)
令
u
=
a
r
c
s
i
n
x
,得
∫
d
x
(
a
r
c
s
i
n
x
)
2
1
−
x
2
=
∫
u
−
2
d
u
=
−
1
a
r
c
s
i
n
x
+
C
(
18
)
令
u
=
a
r
c
c
o
s
x
,得
∫
1
0
2
a
r
c
c
o
s
x
1
−
x
2
d
x
=
∫
(
−
1
0
2
u
)
d
u
令
t
=
2
u
,得
∫
(
−
1
0
2
u
)
d
u
=
−
1
2
∫
1
0
t
d
t
=
−
1
0
t
2
l
n
10
+
C
=
−
1
0
2
a
r
c
c
o
s
x
2
l
n
10
+
C
(
19
)
令
u
=
1
+
x
2
,得
∫
t
a
n
1
+
x
2
⋅
x
d
x
1
+
x
2
=
∫
t
a
n
u
⋅
u
2
−
1
u
⋅
u
u
2
−
1
d
u
=
∫
t
a
n
u
d
u
=
∫
1
−
c
o
s
2
u
c
o
s
u
d
u
令
t
=
c
o
s
u
,得
∫
1
−
c
o
s
2
u
c
o
s
u
d
u
=
∫
1
−
t
2
t
⋅
(
−
1
1
−
t
2
)
d
t
=
−
∫
1
t
d
t
=
−
l
n
∣
t
∣
+
C
=
−
l
n
∣
c
o
s
1
+
x
2
∣
+
C
(
20
)
令
u
=
x
,得
∫
a
r
c
t
a
n
x
x
(
1
+
x
)
d
x
=
∫
2
a
r
c
t
a
n
u
⋅
u
u
(
1
+
u
2
)
d
u
=
2
∫
a
r
c
t
a
n
u
1
+
u
2
d
u
令
t
=
a
r
c
t
a
n
u
,得
2
∫
a
r
c
t
a
n
u
1
+
u
2
d
u
=
2
∫
t
d
t
=
t
2
+
C
=
(
a
r
c
t
a
n
x
)
2
+
C
(
21
)
令
u
=
x
l
n
x
,得
∫
1
+
l
n
x
(
x
l
n
x
)
2
d
x
=
∫
1
u
2
d
u
=
−
1
u
+
C
=
−
1
x
l
n
x
+
C
(
22
)
∫
d
x
s
i
n
x
c
o
s
x
=
∫
c
o
t
x
s
e
c
2
x
d
x
,令
u
=
t
a
n
x
,得
∫
c
o
t
x
s
e
c
2
x
d
x
=
∫
1
u
d
u
=
l
n
∣
u
∣
+
C
=
l
n
∣
t
a
n
x
∣
+
C
(
23
)
∫
l
n
t
a
n
x
c
o
s
x
s
i
n
x
d
x
=
∫
l
n
t
a
n
x
c
o
t
x
s
e
c
2
x
d
x
,令
u
=
t
a
n
x
,得
∫
l
n
t
a
n
x
c
o
t
x
s
e
c
2
x
d
x
=
∫
l
n
u
u
d
u
令
t
=
l
n
u
,得
∫
l
n
u
u
d
u
=
∫
t
e
t
⋅
e
t
d
t
=
∫
t
d
t
=
1
2
t
2
+
C
=
1
2
(
l
n
t
a
n
x
)
2
+
C
(
24
)
∫
c
o
s
3
x
d
x
=
∫
(
1
−
s
i
n
2
x
)
c
o
s
x
d
x
,令
u
=
s
i
n
x
,得
∫
(
1
−
s
i
n
2
x
)
c
o
s
x
d
x
=
∫
(
1
−
u
2
)
d
u
=
∫
1
d
u
−
∫
u
2
d
u
=
u
−
1
3
u
3
+
C
=
s
i
n
x
−
1
3
s
i
n
3
x
+
C
(
25
)
∫
c
o
s
2
(
ω
t
+
φ
)
d
t
=
∫
c
o
s
2
(
ω
t
+
φ
)
+
1
2
d
t
=
1
4
ω
s
i
n
2
(
ω
t
+
φ
)
+
1
2
t
+
C
(
26
)
∫
s
i
n
2
x
c
o
s
3
x
d
x
=
1
2
∫
(
s
i
n
5
x
−
s
i
n
x
)
d
x
=
1
2
(
∫
s
i
n
5
x
d
x
−
∫
s
i
n
x
d
x
)
=
1
2
(
1
5
∫
s
i
n
5
x
d
(
5
x
)
−
∫
s
i
n
x
d
x
)
=
1
2
(
−
1
5
c
o
s
5
x
+
c
o
s
x
)
+
C
=
−
1
10
c
o
s
5
x
+
1
2
c
o
s
x
+
C
(
27
)
∫
c
o
s
x
c
o
s
x
2
d
x
=
1
2
∫
(
c
o
s
3
2
x
+
c
o
s
1
2
x
)
d
x
,令
u
=
x
2
,得
1
2
∫
(
c
o
s
3
2
x
+
c
o
s
1
2
x
)
d
x
=
∫
(
c
o
s
3
u
+
c
o
s
u
)
d
u
=
1
3
∫
c
o
s
3
u
d
(
3
u
)
+
∫
c
o
s
u
d
u
=
1
3
sin
3
u
+
s
i
n
u
+
C
=
1
3
s
i
n
3
2
x
+
s
i
n
x
2
+
C
(
28
)
∫
s
i
n
5
x
s
i
n
7
x
d
x
=
−
1
2
∫
(
c
o
s
12
x
−
c
o
s
2
x
)
d
x
,令
u
=
2
x
,得
−
1
2
∫
(
c
o
s
12
x
−
c
o
s
2
x
)
d
x
=
−
1
4
∫
(
c
o
s
6
u
−
c
o
s
u
)
d
u
=
−
1
24
∫
c
o
s
6
u
d
(
6
u
)
+
1
4
c
o
s
u
d
u
=
−
1
24
s
i
n
6
u
+
1
4
s
i
n
u
+
C
=
−
1
24
s
i
n
12
x
+
1
4
s
i
n
2
x
+
C
(
29
)
∫
t
a
n
3
x
s
e
c
x
d
x
=
∫
t
a
n
2
x
d
(
s
e
c
x
)
=
∫
(
s
e
c
2
x
−
1
)
d
(
s
e
c
x
)
,令
u
=
s
e
c
x
,得
∫
(
s
e
c
2
x
−
1
)
d
(
s
e
c
x
)
=
∫
(
u
2
−
1
)
d
u
=
1
3
u
3
−
u
+
C
=
1
3
s
e
c
3
x
−
s
e
c
x
+
C
\begin{aligned} &\ \ (1)\ 令u=5t,由第一类换元法得\int e^{5t}dt=\frac{1}{5}\int e^udu=\frac{1}{5}e^{5t}+C.\\\\ &\ \ (2)\ 令u=3-2x,由第一类换元法得\int (3-2x)^3dx=-\frac{1}{2}\int u^3du=-\frac{1}{8}(3-2x)^4+C\\\\ &\ \ (3)\ 令u=1-2x,由第一类换元法得\int \frac{dx}{1-2x}=-\frac{1}{2}\int \frac{1}{u}du=-\frac{1}{2}ln\ |1-2x|+C\\\\ &\ \ (4)\ 令u=2-3x,由第一类换元法得\int \frac{dx}{\sqrt[3]{2-3x}}=-\frac{1}{3}\int u^{-\frac{1}{3}}du=-\frac{1}{2}\sqrt[3]{(2-3x)^2}+C\\\\ &\ \ (5)\ \int (sin\ ax-e^{\frac{x}{b}})dx=\int sin\ axdx-\int e^{\frac{x}{b}}dx=\frac{1}{a}\int sin\ axd(ax)-b\int e^{\frac{x}{b}}d\left(\frac{x}{b}\right)=-\frac{1}{a}cos\ ax-be^{\frac{x}{b}}+C\\\\ &\ \ (6)\ 令u=\sqrt{t},由第一类换元法得\int \frac{sin\ \sqrt{t}}{\sqrt{t}}dt=\int \frac{sin\ u}{u}\cdot 2udu=2\int sin\ udu=-2cos\ \sqrt{t}+C\\\\ &\ \ (7)\ 令u=-x^2,由第一类换元法得\int xe^{-x^2}dx=\int \sqrt{-u}e^u\cdot (-\frac{1}{2\sqrt{-u}})du=-\frac{1}{2}\int e^udu=-\frac{1}{2}e^{-x^2}+C\\\\ &\ \ (8)\ 令u=x^2,由第一类换元法得\int xcos(x^2)dx=\int \sqrt{u}cos\ u\cdot \frac{1}{2\sqrt{u}}du=\frac{1}{2}\int cos\ udu=\frac{1}{2}sin(x^2)+C\\\\ &\ \ (9)\ 令u=2-3x^2,由第一类换元法得\int \frac{x}{\sqrt{2-3x^2}}dx=\int \sqrt{\frac{2-u}{3}}\cdot \frac{1}{\sqrt{u}}\cdot \left(-\frac{1}{6\sqrt{\frac{2-u}{3}}}\right)du=\\\\ &\ \ \ \ \ \ \ \ -\frac{1}{6}\int u^{-\frac{1}{2}}du=-\frac{1}{3}\sqrt{2-3x^2}+C\\\\ &\ \ (10)\ 令u=1-x^4,得\int \frac{3x^3}{1-x^4}dx=\int \frac{3(1-u)^{\frac{3}{4}}}{u}\cdot \frac{-1}{4(1-u)^{\frac{3}{4}}}du=-\frac{3}{4}\int \frac{1}{u}du=-\frac{3}{4}ln\ |1-x^4|+C\\\\ &\ \ (11)\ 令u=x^2+2x+5,得\int \frac{x+1}{x^2+2x+5}dx=\int \frac{\sqrt{u-4}}{u}\cdot \frac{1}{2\sqrt{u-4}}du=\frac{1}{2}\int \frac{1}{u}du=\frac{1}{2}ln(x^2+2x+5)+C\\\\ &\ \ (12)\ 令u=cos(\omega t+\varphi),得\int cos^2(\omega t+\varphi)sin(\omega t+\varphi)dt=-\frac{1}{\omega}\int u^2du=-\frac{1}{3\omega}cos^3(\omega t+\varphi)+C\\\\ &\ \ (13)\ 令u=cos\ x,得\int \frac{sin\ x}{cos^3\ x}dx=-\int \frac{1}{u^3}du=\frac{1}{2cos^2\ x}+C\\\\ &\ \ (14)\ 令u=sin\ x-cos\ x,得\int \frac{sin\ x+cos\ x}{\sqrt[3]{sin\ x-cos\ x}}dx=\int u^{-\frac{1}{3}}du=\frac{3}{2}\sqrt[3]{(sin\ x-cos\ x)^2}+C\\\\ &\ \ (15)\ 令u=tan\ x,得\int tan^{10}\ x\cdot sec^2\ xdx=\int u^{10}du=\frac{1}{11}tan^{11}\ x+C\\\\ &\ \ (16)\ 令u=ln\ x,得\int \frac{dx}{xln\ xln\ ln\ x}=\int \frac{e^u}{e^u\cdot u \cdot ln\ u}du=\int \frac{1}{uln\ u}du,\\\\ &\ \ \ \ \ \ \ \ \ \ 令t=ln\ u,得\int \frac{1}{uln\ u}du=\int \frac{e^t}{e^t\cdot t}dt=\int \frac{1}{t}dt=ln\ |ln\ u|+C=ln\ |ln\ ln\ x|+C\\\\ &\ \ (17)\ 令u=arcsin\ x,得\int \frac{dx}{(arcsin\ x)^2\sqrt{1-x^2}}=\int u^{-2}du=-\frac{1}{arcsin\ x}+C\\\\ &\ \ (18)\ 令u=arccos\ x,得\int \frac{10^{2arccos\ x}}{\sqrt{1-x^2}}dx=\int (-10^{2u})du\\\\ &\ \ \ \ \ \ \ \ \ \ 令t=2u,得\int (-10^{2u})du=-\frac{1}{2}\int 10^tdt=-\frac{10^t}{2ln\ 10}+C=-\frac{10^{2arccos\ x}}{2ln\ 10}+C\\\\ &\ \ (19)\ 令u=\sqrt{1+x^2},得\int tan\sqrt{1+x^2}\cdot \frac{xdx}{\sqrt{1+x^2}}=\int tan\ u\cdot \frac{\sqrt{u^2-1}}{u}\cdot \frac{u}{\sqrt{u^2-1}}du=\int tan\ udu=\int \frac{\sqrt{1-cos^2\ u}}{cos\ u}du\\\\ &\ \ \ \ \ \ \ \ \ 令t=cos\ u,得\int \frac{\sqrt{1-cos^2\ u}}{cos\ u}du=\int \frac{\sqrt{1-t^2}}{t}\cdot (-\frac{1}{\sqrt{1-t^2}})dt=-\int \frac{1}{t}dt=-ln\ |t|+C=-ln\ |cos\sqrt{1+x^2}|+C\\\\ &\ \ (20)\ 令u=\sqrt{x},得\int \frac{arctan\sqrt{x}}{\sqrt{x}(1+x)}dx=\int \frac{2arctan\ u\cdot u}{u(1+u^2)}du=2\int \frac{arctan\ u}{1+u^2}du\\\\ &\ \ \ \ \ \ \ \ \ \ 令t=arctan\ u,得2\int \frac{arctan\ u}{1+u^2}du=2\int tdt=t^2+C=(arctan\sqrt{x})^2+C\\\\ &\ \ (21)\ 令u=xln\ x,得\int \frac{1+ln\ x}{(xln\ x)^2}dx=\int \frac{1}{u^2}du=-\frac{1}u+C=-\frac{1}{xln\ x}+C\\\\ &\ \ (22)\ \int \frac{dx}{sin\ xcos\ x}=\int cot\ xsec^2\ xdx,令u=tan\ x,得\int cot\ xsec^2\ xdx=\int \frac{1}{u}du=ln\ |u|+C=ln\ |tan\ x|+C\\\\ &\ \ (23)\ \int \frac{ln\ tan\ x}{cos\ xsin\ x}dx=\int ln\ tan\ xcot\ xsec^2\ xdx,令u=tan\ x,得\int ln\ tan\ xcot\ xsec^2\ xdx=\int \frac{ln\ u}{u}du\\\\ &\ \ \ \ \ \ \ \ \ \ 令t=ln\ u,得\int \frac{ln\ u}{u}du=\int \frac{t}{e^t}\cdot e^tdt=\int tdt=\frac{1}{2}t^2+C=\frac{1}{2}(ln\ tan\ x)^2+C\\\\ &\ \ (24)\ \int cos^3\ xdx=\int (1-sin^2\ x)cos\ xdx,令u=sin\ x,得\\\\ &\ \ \ \ \ \ \ \ \ \ \int (1-sin^2\ x)cos\ xdx=\int (1-u^2)du=\int 1du-\int u^2du=u-\frac{1}{3}u^3+C=sin\ x-\frac{1}{3}sin^3\ x+C\\\\ &\ \ (25)\ \int cos^2(\omega t+\varphi)dt=\int \frac{cos2(\omega t+\varphi)+1}{2}dt=\frac{1}{4\omega}sin2(\omega t+\varphi)+\frac{1}{2}t+C\\\\ &\ \ (26)\ \int sin\ 2xcos\ 3xdx=\frac{1}{2}\int (sin\ 5x-sin\ x)dx=\frac{1}{2}\left(\int sin\ 5xdx-\int sin\ xdx\right)=\\\\ &\ \ \ \ \ \ \ \ \ \ \frac{1}{2}\left(\frac{1}{5}\int sin\ 5xd(5x)-\int sin\ xdx\right)=\frac{1}{2}\left(-\frac{1}{5}cos\ 5x+cos\ x\right)+C=-\frac{1}{10}cos\ 5x+\frac{1}{2}cos\ x+C\\\\ &\ \ (27)\ \int cos\ xcos\ \frac{x}{2}dx=\frac{1}{2}\int \left(cos\ \frac{3}{2}x+cos\ \frac{1}{2}x\right)dx,令u=\frac{x}{2},得\frac{1}{2}\int \left(cos\ \frac{3}{2}x+cos\ \frac{1}{2}x\right)dx=\int (cos\ 3u+cos\ u)du=\\\\ &\ \ \ \ \ \ \ \ \ \ \ \frac{1}{3}\int cos\ 3ud(3u)+\int cos\ udu=\frac{1}{3}\sin \ 3u+sin\ u+C=\frac{1}{3}sin\ \frac{3}{2}x+sin\ \frac{x}{2}+C\\\\ &\ \ (28)\ \int sin\ 5xsin\ 7xdx=-\frac{1}{2}\int (cos\ 12x-cos\ 2x)dx,令u=2x,得-\frac{1}{2}\int (cos\ 12x-cos\ 2x)dx=\\\\ &\ \ \ \ \ \ \ \ \ \ -\frac{1}{4}\int (cos\ 6u-cos\ u)du=-\frac{1}{24}\int cos\ 6ud(6u)+\frac{1}{4}cos\ udu=-\frac{1}{24}sin\ 6u+\frac{1}{4}sin\ u+C=\\\\ &\ \ \ \ \ \ \ \ \ \ -\frac{1}{24}sin\ 12x+\frac{1}{4}sin\ 2x+C\\\\ &\ \ (29)\ \int tan^3\ xsec\ xdx=\int tan^2\ xd(sec\ x)=\int (sec^2\ x-1)d(sec\ x),令u=sec\ x,得\int (sec^2\ x-1)d(sec\ x)=\\\\ &\ \ \ \ \ \ \ \ \ \ \int (u^2-1)du=\frac{1}{3}u^3-u+C=\frac{1}{3}sec^3\ x-sec\ x+C\\\\ & \end{aligned}