ref : P3. Python学习中的两大法宝函数(当然也可以用在PyTorch)_哔哩哔哩_bilibili
1.dir() :
我们要学习一个库中的函数,首先我们要打开这个库,才能找到要了解的函数,怎么打开呢,就是用dir()函数。
2.help()函数:
当我们终于定位到某一个函数时,就可以使用help()函数来查看一下官方文档了。
注意:加入一个函数叫aaa() ,那么使用help查看的时候,一定是help(aaa)。即,记得把aaa()的()去掉
我们以 学习 torch.cuda.is_available() 这个函数为例:
首先:

于是,我们想知道这个 torch.cuda.is_available() 函数到底有什么作用,方法就是先用dir()函数一层层深入到对应函数位置,然后调用help()函数得到官方解释:
1.我们输入dir(torch) 进入torch 于是显示出了很多(还没显示全)的torch库中的函数,或者torch库中的库(torch库中包含的子库)
- In [4]: dir(torch)
- Out[4]:
- ['AVG',
- 'AggregationType',
- 'AliasDb',
- 'AnyType',
- 'Argument',
- 'ArgumentSpec',
- 'BFloat16Storage',
- 'BFloat16Tensor',
- 'BenchmarkConfig',
- 'BenchmarkExecutionStats',
- 'Block',
- 'BoolStorage',
- 'BoolTensor',
- 'BoolType',
- 'BufferDict',
- 'ByteStorage',
- 'ByteTensor',
- 'CONV_BN_FUSION',
- 'CallStack',
- 'Capsule',
- 'CharStorage',
- 'CharTensor',
- 'ClassType',
- 'Code',
- 'CompilationUnit',
- 'CompleteArgumentSpec',
- 'ComplexDoubleStorage',
- 'ComplexFloatStorage',
- 'ComplexType',
- 'ConcreteModuleType',
- 'ConcreteModuleTypeBuilder',
- 'CudaBFloat16StorageBase',
- 'CudaBoolStorageBase',
- 'CudaByteStorageBase',
- 'CudaCharStorageBase',
- 'CudaComplexDoubleStorageBase',
- 'CudaComplexFloatStorageBase',
- 'CudaDoubleStorageBase',
- 'CudaFloatStorageBase',
- 'CudaHalfStorageBase',
- 'CudaIntStorageBase',
- 'CudaLongStorageBase',
- 'CudaShortStorageBase',
- 'DeepCopyMemoTable',
- 'DeserializationStorageContext',
- 'DeviceObjType',
- 'DictType',
- 'DisableTorchFunction',
- 'DoubleStorage',
- 'DoubleTensor',
- 'EnumType',
- 'ErrorReport',
- 'ExecutionPlan',
- 'FUSE_ADD_RELU',
- 'FatalError',
- 'FileCheck',
- 'FloatStorage',
- 'FloatTensor',
- 'FloatType',
- 'FunctionSchema',
- 'Future',
- 'FutureType',
- 'Generator',
- 'Gradient',
- 'Graph',
- 'GraphExecutorState',
- 'HOIST_CONV_PACKED_PARAMS',
- 'HalfStorage',
- 'HalfStorageBase',
- 'HalfTensor',
- 'INSERT_FOLD_PREPACK_OPS',
- 'IODescriptor',
- 'InferredType',
- 'IntStorage',
- 'IntTensor',
- 'IntType',
- 'InterfaceType',
- 'JITException',
- 'ListType',
- 'LiteScriptModule',
- 'LockingLogger',
- 'LoggerBase',
- 'LongStorage',
- 'LongTensor',
- 'MobileOptimizerType',
- 'ModuleDict',
- 'Node',
- 'NoneType',
- 'NoopLogger',
- 'NumberType',
- 'OperatorInfo',
- 'OptionalType',
- 'PRIVATE_OPS',
- 'ParameterDict',
- 'PyObjectType',
- 'PyTorchFileReader',
- 'PyTorchFileWriter',
- 'QInt32Storage',
- 'QInt32StorageBase',
- 'QInt8Storage',
- 'QInt8StorageBase',
- 'QUInt4x2Storage',
- 'QUInt8Storage',
- 'REMOVE_DROPOUT',
- 'RRefType',
- 'SUM',
- 'ScriptClass',
- 'ScriptClassFunction',
- 'ScriptDict',
- 'ScriptDictIterator',
- 'ScriptDictKeyIterator',
- 'ScriptFunction',
- 'ScriptList',
- 'ScriptListIterator',
- 'ScriptMethod',
- 'ScriptModule',
- 'ScriptModuleSerializer',
- 'ScriptObject',
- 'ScriptObjectProperty',
- 'SerializationStorageContext',
- 'Set',
- 'ShortStorage',
- 'ShortTensor',
- 'Size',
- 'StaticModule',
- 'Storage',
- 'Stream',
- 'StreamObjType',
- 'StringType',
- 'TYPE_CHECKING',
- 'Tensor',
- 'TensorType',
- 'ThroughputBenchmark',
- 'TracingState',
- 'TupleType',
- 'Type',
- 'USE_GLOBAL_DEPS',
- 'USE_RTLD_GLOBAL_WITH_LIBTORCH',
- 'UnionType',
- 'Use',
- 'Value',
- '_C',
- '_StorageBase',
- '_VF',
- '__all__',
- '__annotations__',
- '__builtins__',
- '__cached__',
- '__config__',
- '__doc__',
- '__file__',
- '__future__',
- '__loader__',
- '__name__',
- '__package__',
- '__path__',
- '__spec__',
- '__version__',
- '_adaptive_avg_pool2d',
- '_adaptive_avg_pool3d',
- '_add_batch_dim',
- '_add_relu',
- '_add_relu_',
- '_aminmax',
- '_amp_foreach_non_finite_check_and_unscale_',
- '_amp_update_scale_',
- '_assert',
- '_assert_async',
- '_baddbmm_mkl_',
- '_batch_norm_impl_index',
- '_cast_Byte',
- '_cast_Char',
- '_cast_Double',
- '_cast_Float',
- '_cast_Half',
- '_cast_Int',
- '_cast_Long',
- '_cast_Short',
- '_cat',
- '_choose_qparams_per_tensor',
- '_classes',
- '_coalesce',
- '_compute_linear_combination',
- '_conj',
- '_conj_physical',
- '_convert_indices_from_coo_to_csr',
- '_convolution',
- '_convolution_mode',
- '_convolution_nogroup',
- '_copy_from',
- '_copy_from_and_resize',
- '_ctc_loss',
- '_cudnn_ctc_loss',
- '_cudnn_init_dropout_state',
- '_cudnn_rnn',
- '_cudnn_rnn_flatten_weight',
- '_cufft_clear_plan_cache',
- '_cufft_get_plan_cache_max_size',
- '_cufft_get_plan_cache_size',
- '_cufft_set_plan_cache_max_size',
- '_cummax_helper',
- '_cummin_helper',
- '_debug_has_internal_overlap',
- '_det_lu_based_helper',
- '_det_lu_based_helper_backward_helper',
- '_dim_arange',
- '_dirichlet_grad',
- '_embedding_bag',
- '_embedding_bag_forward_only',
- '_empty_affine_quantized',
- '_empty_per_channel_affine_quantized',
- '_euclidean_dist',
- '_fake_quantize_learnable_per_channel_affine',
- '_fake_quantize_learnable_per_tensor_affine',
- '_fake_quantize_per_tensor_affine_cachemask_tensor_qparams',
- '_fft_c2c',
- '_fft_c2r',
- '_fft_r2c',
- '_foreach_abs',
- '_foreach_abs_',
- '_foreach_acos',
- '_foreach_acos_',
- '_foreach_add',
- '_foreach_add_',
- '_foreach_addcdiv',
- '_foreach_addcdiv_',
- '_foreach_addcmul',
- '_foreach_addcmul_',
- '_foreach_asin',
- '_foreach_asin_',
- '_foreach_atan',
- '_foreach_atan_',
- '_foreach_ceil',
- '_foreach_ceil_',
- '_foreach_cos',
- '_foreach_cos_',
- '_foreach_cosh',
- '_foreach_cosh_',
- '_foreach_div',
- '_foreach_div_',
- '_foreach_erf',
- '_foreach_erf_',
- '_foreach_erfc',
- '_foreach_erfc_',
- '_foreach_exp',
- '_foreach_exp_',
- '_foreach_expm1',
- '_foreach_expm1_',
- '_foreach_floor',
- '_foreach_floor_',
- '_foreach_frac',
- '_foreach_frac_',
- '_foreach_lgamma',
- '_foreach_lgamma_',
- '_foreach_log',
- '_foreach_log10',
- '_foreach_log10_',
- '_foreach_log1p',
- '_foreach_log1p_',
- '_foreach_log2',
- '_foreach_log2_',
- '_foreach_log_',
- '_foreach_maximum',
- '_foreach_minimum',
- '_foreach_mul',
- '_foreach_mul_',
- '_foreach_neg',
- '_foreach_neg_',
- '_foreach_reciprocal',
- '_foreach_reciprocal_',
- '_foreach_round',
- '_foreach_round_',
- '_foreach_sigmoid',
- '_foreach_sigmoid_',
- '_foreach_sin',
- '_foreach_sin_',
- '_foreach_sinh',
- '_foreach_sinh_',
- '_foreach_sqrt',
- '_foreach_sqrt_',
- '_foreach_sub',
- '_foreach_sub_',
- '_foreach_tan',
- '_foreach_tan_',
- '_foreach_tanh',
- '_foreach_tanh_',
- '_foreach_trunc',
- '_foreach_trunc_',
- '_foreach_zero_',
- '_fused_dropout',
- '_fused_moving_avg_obs_fq_helper',
- '_grid_sampler_2d_cpu_fallback',
- '_has_compatible_shallow_copy_type',
- '_import_dotted_name',
- '_index_copy_',
- '_index_put_impl_',
- '_initExtension',
- '_jit_internal',
- '_linalg_inv_out_helper_',
- '_linalg_qr_helper',
- '_linalg_utils',
- '_load_global_deps',
- '_lobpcg',
- '_log_softmax',
- '_log_softmax_backward_data',
- '_logcumsumexp',
- '_lowrank',
- '_lu_with_info',
- '_make_dual',
- '_make_per_channel_quantized_tensor',
- '_make_per_tensor_quantized_tensor',
- '_masked_scale',
- '_mkldnn',
- '_mkldnn_reshape',
- '_mkldnn_transpose',
- '_mkldnn_transpose_',
- '_namedtensor_internals',
- '_neg_view',
- '_nnpack_available',
- '_nnpack_spatial_convolution',
- '_ops',
- '_pack_padded_sequence',
- '_pad_packed_sequence',
- '_pin_memory',
- '_register_device_module',
- '_remove_batch_dim',
- '_reshape_from_tensor',
- '_rowwise_prune',
- '_s_where',
- '_sample_dirichlet',
- '_saturate_weight_to_fp16',
- '_shape_as_tensor',
- '_six',
- '_sobol_engine_draw',
- '_sobol_engine_ff_',
- '_sobol_engine_initialize_state_',
- '_sobol_engine_scramble_',
- '_softmax',
- '_softmax_backward_data',
- '_sources',
- '_sparse_addmm',
- '_sparse_coo_tensor_unsafe',
- '_sparse_csr_tensor_unsafe',
- '_sparse_log_softmax',
- '_sparse_log_softmax_backward_data',
- '_sparse_mask_helper',
- '_sparse_mm',
- '_sparse_softmax',
- '_sparse_softmax_backward_data',
- '_sparse_sparse_matmul',
- '_sparse_sum',
- '_stack',
- '_standard_gamma',
- '_standard_gamma_grad',
- '_storage_classes',
- '_string_classes',
- '_tensor',
- '_tensor_classes',
- '_tensor_str',
- '_test_serialization_subcmul',
- '_to_cpu',
- '_trilinear',
- '_unique',
- '_unique2',
- '_unpack_dual',
- '_use_cudnn_ctc_loss',
- '_use_cudnn_rnn_flatten_weight',
- '_utils',
- '_utils_internal',
- '_validate_sparse_coo_tensor_args',
- '_validate_sparse_csr_tensor_args',
- '_vmap_internals',
- '_weight_norm',
- '_weight_norm_cuda_interface',
- 'abs',
- 'abs_',
- 'absolute',
- 'acos',
- 'acos_',
- 'acosh',
- 'acosh_',
- 'adaptive_avg_pool1d',
- 'adaptive_max_pool1d',
- 'add',
- 'addbmm',
- 'addcdiv',
- 'addcmul',
- 'addmm',
- 'addmv',
- 'addmv_',
- 'addr',
- 'affine_grid_generator',
- 'align_tensors',
- 'all',
- 'allclose',
- 'alpha_dropout',
- 'alpha_dropout_',
- 'amax',
- 'amin',
- 'aminmax',
- 'angle',
- 'any',
- 'ao',
- 'arange',
- 'arccos',
- 'arccos_',
- 'arccosh',
- 'arccosh_',
- 'arcsin',
- 'arcsin_',
- 'arcsinh',
- 'arcsinh_',
- 'arctan',
- 'arctan_',
- 'arctanh',
- 'arctanh_',
- 'are_deterministic_algorithms_enabled',
- 'argmax',
- 'argmin',
- 'argsort',
- 'as_strided',
- 'as_strided_',
- 'as_tensor',
- 'asin',
- 'asin_',
- 'asinh',
- 'asinh_',
- 'atan',
- 'atan2',
- 'atan_',
- 'atanh',
- 'atanh_',
- 'atleast_1d',
- 'atleast_2d',
- 'atleast_3d',
- 'attr',
- 'autocast',
- 'autocast_decrement_nesting',
- 'autocast_increment_nesting',
- 'autocast_mode',
- 'autograd',
- 'avg_pool1d',
- 'backends',
- 'baddbmm',
- 'bartlett_window',
- 'batch_norm',
- 'batch_norm_backward_elemt',
- 'batch_norm_backward_reduce',
- 'batch_norm_elemt',
- 'batch_norm_gather_stats',
- 'batch_norm_gather_stats_with_counts',
- 'batch_norm_stats',
- 'batch_norm_update_stats',
- 'bernoulli',
- 'bfloat16',
- 'bilinear',
- 'binary_cross_entropy_with_logits',
- 'bincount',
- 'binomial',
- 'bitwise_and',
- 'bitwise_left_shift',
- 'bitwise_not',
- 'bitwise_or',
- 'bitwise_right_shift',
- 'bitwise_xor',
- 'blackman_window',
- 'block_diag',
- 'bmm',
- 'bool',
- 'broadcast_shapes',
- 'broadcast_tensors',
- 'broadcast_to',
- 'bucketize',
- 'can_cast',
- 'candidate',
- 'cartesian_prod',
- 'cat',
- 'cdist',
- 'cdouble',
- 'ceil',
- 'ceil_',
- 'celu',
- 'celu_',
- 'cfloat',
- 'chain_matmul',
- 'channel_shuffle',
- 'channels_last',
- 'channels_last_3d',
- 'cholesky',
- 'cholesky_inverse',
- 'cholesky_solve',
- 'choose_qparams_optimized',
- 'chunk',
- 'clamp',
- 'clamp_',
- 'clamp_max',
- 'clamp_max_',
- 'clamp_min',
- 'clamp_min_',
- 'classes',
- 'clear_autocast_cache',
- 'clip',
- 'clip_',
- 'clone',
- 'column_stack',
- 'combinations',
- 'compiled_with_cxx11_abi',
- 'complex',
- 'complex128',
- 'complex32',
- 'complex64',
- 'concat',
- 'conj',
- 'conj_physical',
- 'conj_physical_',
- 'constant_pad_nd',
- 'contiguous_format',
- 'conv1d',
- 'conv2d',
- 'conv3d',
- 'conv_tbc',
- 'conv_transpose1d',
- 'conv_transpose2d',
- 'conv_transpose3d',
- 'convolution',
- 'copysign',
- 'corrcoef',
- 'cos',
- 'cos_',
- 'cosh',
- 'cosh_',
- 'cosine_embedding_loss',
- 'cosine_similarity',
- 'count_nonzero',
- 'cov',
- 'cpp',
- 'cpu',
- 'cross',
- 'ctc_loss',
- 'ctypes',
- 'cuda',
- 'cudnn_affine_grid_generator',
- 'cudnn_batch_norm',
- 'cudnn_convolution',
- 'cudnn_convolution_add_relu',
- 'cudnn_convolution_relu',
- 'cudnn_convolution_transpose',
- 'cudnn_grid_sampler',
- 'cudnn_is_acceptable',
- 'cummax',
- 'cummin',
- 'cumprod',
- 'cumsum',
- 'cumulative_trapezoid',
- 'default_generator',
- 'deg2rad',
- 'deg2rad_',
- 'dequantize',
- 'det',
- 'detach',
- 'detach_',
- 'device',
- 'diag',
- 'diag_embed',
- 'diagflat',
- 'diagonal',
- 'diff',
- 'digamma',
- 'dist',
- 'distributed',
- 'distributions',
- 'div',
- 'divide',
- 'dot',
- 'double',
- 'dropout',
- 'dropout_',
- 'dsmm',
- 'dsplit',
- 'dstack',
- 'dtype',
- 'e',
- 'eig',
- 'einsum',
- 'embedding',
- 'embedding_bag',
- 'embedding_renorm_',
- 'empty',
- 'empty_like',
- 'empty_quantized',
- 'empty_strided',
- 'enable_grad',
- 'eq',
- 'equal',
- 'erf',
- 'erf_',
- 'erfc',
- 'erfc_',
- 'erfinv',
- 'exp',
- 'exp2',
- 'exp2_',
- 'exp_',
- 'expm1',
- 'expm1_',
- 'eye',
- 'fake_quantize_per_channel_affine',
- 'fake_quantize_per_tensor_affine',
- 'fbgemm_linear_fp16_weight',
- 'fbgemm_linear_fp16_weight_fp32_activation',
- 'fbgemm_linear_int8_weight',
- 'fbgemm_linear_int8_weight_fp32_activation',
- 'fbgemm_linear_quantize_weight',
- 'fbgemm_pack_gemm_matrix_fp16',
- 'fbgemm_pack_quantized_matrix',
- 'feature_alpha_dropout',
- 'feature_alpha_dropout_',
- 'feature_dropout',
- 'feature_dropout_',
- 'fft',
- 'fill_',
- 'finfo',
- 'fix',
- 'fix_',
- 'flatten',
- 'flip',
- 'fliplr',
- 'flipud',
- 'float',
- 'float16',
- 'float32',
- 'float64',
- 'float_power',
- 'floor',
- 'floor_',
- 'floor_divide',
- 'fmax',
- 'fmin',
- 'fmod',
- 'fork',
- 'frac',
- 'frac_',
- 'frexp',
- 'frobenius_norm',
- 'from_dlpack',
- 'from_file',
- 'from_numpy',
- 'frombuffer',
- 'full',
- 'full_like',
- 'functional',
- 'fused_moving_avg_obs_fake_quant',
- 'futures',
- 'gather',
- 'gcd',
- 'gcd_',
- 'ge',
- 'geqrf',
- 'ger',
- 'get_autocast_cpu_dtype',
- 'get_autocast_gpu_dtype',
- 'get_default_dtype',
- 'get_device',
- 'get_file_path',
- 'get_num_interop_threads',
- 'get_num_threads',
- 'get_rng_state',
- 'gradient',
- 'greater',
- 'greater_equal',
- 'grid_sampler',
- 'grid_sampler_2d',
- 'grid_sampler_3d',
- 'group_norm',
- 'gru',
- 'gru_cell',
- 'gt',
- 'half',
- 'hamming_window',
- 'hann_window',
- 'hardshrink',
- 'has_cuda',
- 'has_cudnn',
- 'has_lapack',
- 'has_mkl',
- 'has_mkldnn',
- 'has_mlc',
- 'has_openmp',
- 'has_spectral',
- 'heaviside',
- 'hinge_embedding_loss',
- 'histc',
- 'histogram',
- 'hsmm',
- 'hsplit',
- 'hspmm',
- 'hstack',
- 'hub',
- 'hypot',
- 'i0',
- 'i0_',
- 'igamma',
- 'igammac',
- 'iinfo',
- 'imag',
- 'import_ir_module',
- 'import_ir_module_from_buffer',
- 'index_add',
- 'index_copy',
- 'index_fill',
- 'index_put',
- 'index_put_',
- 'index_select',
- 'inf',
- 'inference_mode',
- 'init_num_threads',
- 'initial_seed',
- 'inner',
- 'instance_norm',
- 'int',
- 'int16',
- 'int32',
- 'int64',
- 'int8',
- 'int_repr',
- 'inverse',
- 'is_anomaly_enabled',
- 'is_autocast_cache_enabled',
- 'is_autocast_cpu_enabled',
- 'is_autocast_enabled',
- 'is_complex',
- 'is_conj',
- 'is_distributed',
- 'is_floating_point',
- 'is_grad_enabled',
- 'is_inference',
- 'is_inference_mode_enabled',
- 'is_neg',
- 'is_nonzero',
- 'is_same_size',
- 'is_signed',
- 'is_storage',
- 'is_tensor',
- 'is_vulkan_available',
- 'is_warn_always_enabled',
- 'isclose',
- 'isfinite',
- 'isin',
- 'isinf',
- 'isnan',
- 'isneginf',
- 'isposinf',
- 'isreal',
- 'istft',
- 'jit',
- 'kaiser_window',
- 'kl_div',
- 'kron',
- 'kthvalue',
- 'layer_norm',
- 'layout',
- 'lcm',
- 'lcm_',
- 'ldexp',
- 'ldexp_',
- 'le',
- 'legacy_contiguous_format',
- 'lerp',
- 'less',
- 'less_equal',
- 'lgamma',
- 'linalg',
- 'linspace',
- 'load',
- 'lobpcg',
- 'log',
- 'log10',
- 'log10_',
- 'log1p',
- 'log1p_',
- 'log2',
- 'log2_',
- 'log_',
- 'log_softmax',
- 'logaddexp',
- 'logaddexp2',
- 'logcumsumexp',
- 'logdet',
- 'logical_and',
- 'logical_not',
- 'logical_or',
- 'logical_xor',
- 'logit',
- 'logit_',
- 'logspace',
- 'logsumexp',
- 'long',
- 'lstm',
- 'lstm_cell',
- 'lstsq',
- 'lt',
- 'lu',
- 'lu_solve',
- 'lu_unpack',
- 'manual_seed',
- 'margin_ranking_loss',
- 'masked_fill',
- 'masked_scatter',
- 'masked_select',
- 'matmul',
- 'matrix_exp',
- 'matrix_power',
- 'matrix_rank',
- 'max',
- 'max_pool1d',
- 'max_pool1d_with_indices',
- 'max_pool2d',
- 'max_pool3d',
- 'maximum',
- 'mean',
- 'median',
- 'memory_format',
- 'merge_type_from_type_comment',
- 'meshgrid',
- 'min',
- 'minimum',
- 'miopen_batch_norm',
- 'miopen_convolution',
- 'miopen_convolution_transpose',
- 'miopen_depthwise_convolution',
- 'miopen_rnn',
- 'mkldnn_adaptive_avg_pool2d',
- 'mkldnn_convolution',
- 'mkldnn_convolution_backward_weights',
- 'mkldnn_linear_backward_weights',
- 'mkldnn_max_pool2d',
- 'mkldnn_max_pool3d',
- 'mm',
- 'mode',
- 'moveaxis',
- 'movedim',
- 'msort',
- 'mul',
- 'multinomial',
- 'multiply',
- 'multiprocessing',
- 'mv',
- 'mvlgamma',
- 'name',
- 'nan',
- 'nan_to_num',
- 'nan_to_num_',
- 'nanmean',
- 'nanmedian',
- 'nanquantile',
- 'nansum',
- 'narrow',
- 'narrow_copy',
- 'native_batch_norm',
- 'native_group_norm',
- 'native_layer_norm',
- 'native_norm',
- 'ne',
- 'neg',
- 'neg_',
- 'negative',
- 'negative_',
- 'nextafter',
- 'nn',
- 'no_grad',
- 'nonzero',
- 'norm',
- 'norm_except_dim',
- 'normal',
- 'not_equal',
- 'nuclear_norm',
- 'numel',
- 'ones',
- 'ones_like',
- 'onnx',
- 'ops',
- 'optim',
- 'orgqr',
- 'ormqr',
- 'os',
- 'outer',
- 'overrides',
- 'package',
- 'pairwise_distance',
- 'parse_ir',
- 'parse_schema',
- 'parse_type_comment',
- 'pca_lowrank',
- 'pdist',
- 'per_channel_affine',
- 'per_channel_affine_float_qparams',
- 'per_channel_symmetric',
- 'per_tensor_affine',
- 'per_tensor_symmetric',
- 'permute',
- 'pi',
- 'pinverse',
- 'pixel_shuffle',
- 'pixel_unshuffle',
- 'platform',
- 'poisson',
- 'poisson_nll_loss',
- 'polar',
- 'polygamma',
- 'positive',
- 'pow',
- 'prelu',
- 'prepare_multiprocessing_environment',
- 'preserve_format',
- 'prod',
- 'profiler',
- 'promote_types',
- 'put',
- 'q_per_channel_axis',
- 'q_per_channel_scales',
- 'q_per_channel_zero_points',
- 'q_scale',
- 'q_zero_point',
- 'qint32',
- 'qint8',
- 'qr',
- 'qscheme',
- 'quantile',
- 'quantization',
- 'quantize_per_channel',
- 'quantize_per_tensor',
- 'quantized_batch_norm',
- 'quantized_gru',
- 'quantized_gru_cell',
- 'quantized_lstm',
- 'quantized_lstm_cell',
- 'quantized_max_pool1d',
- 'quantized_max_pool2d',
- 'quantized_rnn_relu_cell',
- 'quantized_rnn_tanh_cell',
- 'quasirandom',
- 'quint4x2',
- 'quint8',
- 'rad2deg',
- 'rad2deg_',
- 'rand',
- 'rand_like',
- 'randint',
- 'randint_like',
- 'randn',
- 'randn_like',
- 'random',
- 'randperm',
- 'range',
- 'ravel',
- 'read_vitals',
- 'real',
- 'reciprocal',
- 'reciprocal_',
- 'relu',
- 'relu_',
- 'remainder',
- 'renorm',
- 'repeat_interleave',
- 'reshape',
- 'resize_as_',
- 'resize_as_sparse_',
- 'resolve_conj',
- 'resolve_neg',
- 'result_type',
- 'rnn_relu',
- 'rnn_relu_cell',
- 'rnn_tanh',
- 'rnn_tanh_cell',
- 'roll',
- 'rot90',
- 'round',
- 'round_',
- 'row_stack',
- 'rrelu',
- 'rrelu_',
- 'rsqrt',
- 'rsqrt_',
- 'rsub',
- 'saddmm',
- 'save',
- 'scalar_tensor',
- 'scatter',
- 'scatter_add',
- 'searchsorted',
- 'seed',
- 'segment_reduce',
- 'select',
- 'selu',
- 'selu_',
- 'serialization',
- 'set_anomaly_enabled',
- 'set_autocast_cache_enabled',
- 'set_autocast_cpu_dtype',
- 'set_autocast_cpu_enabled',
- ...]
然后我们当然是可以进一步,继续dir(torch.cuda)再去看看torch.cuda中的库或者函数都有哪些,但是,没啥必要,因为我们现在就只是想知道torch.cuda.is_available()函数啥意思,所以,其实前面的dir()步骤都可以去掉,直接help(torch.cuda.is_available)就可以了。
如下图所示:

注意:库到子库到相应函数之间是用 " . " 相连的,并且,help布景可以给出函数的说明,也可以给出库的说明。即:help(torch.cuda) 也是可以的