- #!/usr/bin/env python
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
- """
- Run inference on images, videos, directories, streams, etc.
- Usage - sources:
- $ python path/to/detect.py --weights yolov5s.pt --source 0 # webcam
- img.jpg # image
- vid.mp4 # video
- path/ # directory
- path/*.jpg # glob
- 'https://youtu.be/Zgi9g1ksQHc' # YouTube
- 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
- Usage - formats:
- $ python path/to/detect.py --weights yolov5s.pt # PyTorch
- yolov5s.torchscript # TorchScript
- yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
- yolov5s.xml # OpenVINO
- yolov5s.engine # TensorRT
- yolov5s.mlmodel # CoreML (macOS-only)
- yolov5s_saved_model # TensorFlow SavedModel
- yolov5s.pb # TensorFlow GraphDef
- yolov5s.tflite # TensorFlow Lite
- yolov5s_edgetpu.tflite # TensorFlow Edge TPU
- """
-
- import argparse #命令行解析模块
- import os
- import platform
- import sys
- from pathlib import Path
- import cv2
- import torch
- import torch.backends.cudnn as cudnn
-
- FILE = Path(__file__).resolve()
- ROOT = FILE.parents[0] # YOLOv5 root directory
- if str(ROOT) not in sys.path:
- sys.path.append(str(ROOT)) # add ROOT to PATH
- ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
-
- from models.common import DetectMultiBackend
- from utils.datasets import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams
- from utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr,
- increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh)
- from utils.plots import Annotator, colors, save_one_box
- from utils.torch_utils import select_device, time_sync
-
-
- @torch.no_grad()
- def run(
- weights=ROOT / 'yolov5s.pt', # model.pt path(s)
- source=ROOT / 'data/images', # file/dir/URL/glob, 0 for webcam
- data=ROOT / 'data/coco128.yaml', # dataset.yaml path
- imgsz=(640, 640), # inference size (height, width)
- conf_thres=0.25, # confidence threshold
- iou_thres=0.45, # NMS IOU threshold
- max_det=1000, # maximum detections per image
- device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
- view_img=False, # show results
- save_txt=False, # save results to *.txt
- save_conf=False, # save confidences in --save-txt labels
- save_crop=False, # save cropped prediction boxes
- nosave=False, # do not save images/videos
- classes=None, # filter by class: --class 0, or --class 0 2 3
- agnostic_nms=False, # class-agnostic NMS
- augment=False, # augmented inference
- visualize=False, # visualize features
- update=False, # update all models
- project=ROOT / 'runs/detect', # save results to project/name
- name='exp', # save results to project/name
- exist_ok=False, # existing project/name ok, do not increment
- line_thickness=3, # bounding box thickness (pixels)
- hide_labels=False, # hide labels
- hide_conf=False, # hide confidences
- half=False, # use FP16 half-precision inference
- dnn=False, # use OpenCV DNN for ONNX inference
- ):
- source = str(source)
- save_img = not nosave and not source.endswith('.txt') # save inference images
- is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
- is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
- webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)#是否要用电脑摄像头
- if is_url and is_file:
- source = check_file(source) # download
-
- # Directories
- save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
- (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
-
- # Load model
- device = select_device(device) #指定设备
- #加载模型
- model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
- stride, names, pt = model.stride, model.names, model.pt
- imgsz = check_img_size(imgsz, s=stride) # 检查图像尺寸,确保能被32整除
-
- # Dataloader 加载数据
- if webcam: #电脑摄像头
- view_img = check_imshow()
- cudnn.benchmark = True # set True to speed up constant image size inference
- dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
- bs = len(dataset) # batch_size
- else: #数据集
- dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
- bs = 1 # batch_size
- vid_path, vid_writer = [None] * bs, [None] * bs
-
- # Run inference
- model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup 模型预热
- seen, windows, dt = 0, [], [0.0, 0.0, 0.0]
- '''
- path 图片视频路径
- img 进行resize+pad之后的图片,如(3,640,512)(c,h,w)
- img0s 原size图片,(1080,810,3)
- cap 读取图片时为None 读取视频时为视频源
- '''
- for path, im, im0s, vid_cap, s in dataset:
- t1 = time_sync() #获取时间
- im = torch.from_numpy(im).to(device) #转化为tensor格式
- im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
- im /= 255 # 0 - 255 to 0.0 - 1.0 #0~1中间的值
- if len(im.shape) == 3:
- im = im[None] # expand for batch dim
- t2 = time_sync()
- dt[0] += t2 - t1
-
- # Inference
- visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
- pred = model(im, augment=augment, visualize=visualize) #将图片传入模型网络
- t3 = time_sync()
- dt[1] += t3 - t2
-
- # NMS
- # pred :前向传播的输出
- # conf_thres 置信度阈值
- # classes 是否保留特定类别
- # 经过nms之后,预测框格式会变从 xywh变成xyxy
- pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
- dt[2] += time_sync() - t3
-
- # Second-stage classifier (optional)
- # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
-
- # Process predictions
- # 对每一张图片处理 i表示第几个框
- for i, det in enumerate(pred): # per image
- seen += 1
- if webcam: # batch_size >= 1
- p, im0, frame = path[i], im0s[i].copy(), dataset.count
- s += f'{i}: '
- else:
- p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
-
- p = Path(p) # to Path
- save_path = str(save_dir / p.name) # 保存图片路径
- txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # 设置保存框坐标的txt文件
- s += '%gx%g ' % im.shape[2:] # 设置打印信息图片宽高
- gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
- imc = im0.copy() if save_crop else im0 # for save_crop
- annotator = Annotator(im0, line_width=line_thickness, example=str(names))
- if len(det):
- # 调整预测框的坐标,基于resize+pad的图片坐标转化为原size图像上的坐标
- #此时坐标格式是xyxy
- det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()
-
- # Print results 打印检测到结果的类别数目
- for c in det[:, -1].unique():
- n = (det[:, -1] == c).sum() # detections per class
- s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
-
- # Write results 保存预测结果
- for *xyxy, conf, cls in reversed(det):
- if save_txt: # Write to file
- xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh 将xyxy格式转化为xywh,并除上wh做归一化,转为列表保存
- line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
- with open(f'{txt_path}.txt', 'a') as f:
- f.write(('%g ' * len(line)).rstrip() % line + '\n')
- #在原图上画框
- if save_img or save_crop or view_img: # Add bbox to image
- c = int(cls) # integer class
- label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
- annotator.box_label(xyxy, label, color=colors(c, True))
- if save_crop:
- save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
-
- # Stream results
- im0 = annotator.result()
- if view_img: #显示预测图片
- if platform.system() == 'Linux' and p not in windows:
- windows.append(p)
- cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
- cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
- cv2.imshow(str(p), im0)
- cv2.waitKey(1) # 1 millisecond
-
- # Save results (image with detections)
- if save_img: #保存预测后的图片
- if dataset.mode == 'image':
- cv2.imwrite(save_path, im0)
- else: # 'video' or 'stream'
- if vid_path[i] != save_path: # new video
- vid_path[i] = save_path
- if isinstance(vid_writer[i], cv2.VideoWriter):
- vid_writer[i].release() # release previous video writer
- if vid_cap: # video
- fps = vid_cap.get(cv2.CAP_PROP_FPS)
- w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
- h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
- else: # stream
- fps, w, h = 30, im0.shape[1], im0.shape[0]
- save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
- vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
- vid_writer[i].write(im0)
-
- # Print time (inference-only)
- LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')
-
- # Print results
- t = tuple(x / seen * 1E3 for x in dt) # speeds per image
- LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
- if save_txt or save_img:
- s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
- LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
- if update:
- strip_optimizer(weights) # update model (to fix SourceChangeWarning)
-
-
- def parse_opt():
- #建立参数解析对象parser
- parser = argparse.ArgumentParser()
- parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path(s)')
- parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob, 0 for webcam')
- parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
- parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w') #网络输入图片的大小
- parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold') #置信度阈值
- parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')#iou阈值
- parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
- parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') #设置设备
- parser.add_argument('--view-img', action='store_true', help='show results') #是否展示预测之后的视频
- parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')#是否将预测的框以txt保存
- parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')#是否将置信度保存
- parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
- parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
- parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3') #设置只保留某一部分类别
- parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')#进行nms是否去除不同类别之间的框
- parser.add_argument('--augment', action='store_true', help='augmented inference')#推理时候进行多尺度翻转
- parser.add_argument('--visualize', action='store_true', help='visualize features')
- parser.add_argument('--update', action='store_true', help='update all models') #对所有模型进行strip_optimizer操作
- parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
- parser.add_argument('--name', default='exp', help='save results to project/name')
- parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
- parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
- parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
- parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
- parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') #是否是半精度
- parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
- opt = parser.parse_args() #参数都会放到opt
- opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
- print_args(FILE.stem, opt)
- return opt
-
-
- def main(opt):
- check_requirements(exclude=('tensorboard', 'thop'))
- run(**vars(opt))
-
-
- if __name__ == "__main__":
-
- opt = parse_opt()
- main(opt)
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
- """
- Train a YOLOv5 model on a custom dataset.
- Models and datasets download automatically from the latest YOLOv5 release.
- Models: https://github.com/ultralytics/yolov5/tree/master/models
- Datasets: https://github.com/ultralytics/yolov5/tree/master/data
- Tutorial: https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data
- Usage:
- $ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 640 # from pretrained (RECOMMENDED)
- $ python path/to/train.py --data coco128.yaml --weights '' --cfg yolov5s.yaml --img 640 # from scratch
- """
-
- import argparse
- import math
- import os
- import random
- import sys
- import time
- from copy import deepcopy
- from datetime import datetime
- from pathlib import Path
-
- import numpy as np
- import torch
- import torch.distributed as dist
- import torch.nn as nn
- import yaml
- from torch.cuda import amp
- from torch.nn.parallel import DistributedDataParallel as DDP
- from torch.optim import SGD, Adam, AdamW, lr_scheduler
- from tqdm import tqdm
-
- FILE = Path(__file__).resolve()
- ROOT = FILE.parents[0] # YOLOv5 root directory
- if str(ROOT) not in sys.path:
- sys.path.append(str(ROOT)) # add ROOT to PATH
- ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
-
- import val # for end-of-epoch mAP
- from models.experimental import attempt_load
- from models.yolo import Model
- from utils.autoanchor import check_anchors
- from utils.autobatch import check_train_batch_size
- from utils.callbacks import Callbacks
- from utils.datasets import create_dataloader
- from utils.downloads import attempt_download
- from utils.general import (LOGGER, check_dataset, check_file, check_git_status, check_img_size, check_requirements,
- check_suffix, check_yaml, colorstr, get_latest_run, increment_path, init_seeds,
- intersect_dicts, labels_to_class_weights, labels_to_image_weights, methods, one_cycle,
- print_args, print_mutation, strip_optimizer)
- from utils.loggers import Loggers
- from utils.loggers.wandb.wandb_utils import check_wandb_resume
- from utils.loss import ComputeLoss
- from utils.metrics import fitness
- from utils.plots import plot_evolve, plot_labels
- from utils.torch_utils import EarlyStopping, ModelEMA, de_parallel, select_device, torch_distributed_zero_first
-
- LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
- RANK = int(os.getenv('RANK', -1))
- WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
-
- #**********************************************************************************************************************
- # *
- # 三、训练过程 *
- # *
- #**********************************************************************************************************************
- def train(hyp, # path/to/hyp.yaml or hyp dictionary
- opt,
- device,
- callbacks
- ):
- save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \
- Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
- opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze
- #**********************************************************************************************************************
- # 3.1 权重、数据集、参数、路径初始化 *
- #**********************************************************************************************************************
- # Directories
- w = save_dir / 'weights' # weights dir
- (w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir
- last, best = w / 'last.pt', w / 'best.pt' #保存权重的路径
-
- # Hyperparameters 超参数
- if isinstance(hyp, str):
- with open(hyp, errors='ignore') as f:
- hyp = yaml.safe_load(f) # load hyps dict
- LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
-
- # Save run settings
- if not evolve:
- with open(save_dir / 'hyp.yaml', 'w') as f: #创建yaml文件
- yaml.safe_dump(hyp, f, sort_keys=False)
- with open(save_dir / 'opt.yaml', 'w') as f:
- yaml.safe_dump(vars(opt), f, sort_keys=False)
-
- # Loggers
- data_dict = None
- if RANK in [-1, 0]:
- loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance
- if loggers.wandb:
- data_dict = loggers.wandb.data_dict
- if resume:
- weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size
-
- # Register actions
- for k in methods(loggers):
- callbacks.register_action(k, callback=getattr(loggers, k))
-
- # Config
- plots = not evolve # create plots
- cuda = device.type != 'cpu' #选择设备
- init_seeds(1 + RANK) #随机化种子
- with torch_distributed_zero_first(LOCAL_RANK):
- data_dict = data_dict or check_dataset(data) # check if None 检查路径
- # 获取训练集、测试集图片路径
- train_path, val_path = data_dict['train'], data_dict['val']
- # 设置类别的数量nc 和对应的名字names
- nc = 1 if single_cls else int(data_dict['nc']) # number of classes
- names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
- # 确认name和nc的长度是想等的
- assert len(names) == nc, f'{len(names)} names found for nc={nc} dataset in {data}' # check
- is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt') # COCO dataset
- #**********************************************************************************************************************
- # 3.2 加载网络模型 *
- #**********************************************************************************************************************
- # Model
- check_suffix(weights, '.pt') # check weights 检查权重名
- pretrained = weights.endswith('.pt')
- if pretrained: #有预训练
- # 从谷歌云盘下载模型
- with torch_distributed_zero_first(LOCAL_RANK):
- weights = attempt_download(weights) # download if not found locally
- # 加载模型参数
- ckpt = torch.load(weights, map_location='cpu') # load checkpoint to CPU to avoid CUDA memory leak
- # 加载模型
- model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
- # 获得anchor
- exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys
- csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
- csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect
- # 模型创建
- model.load_state_dict(csd, strict=False) # load
- # 如果pretrained为ture 则会少加载两个键对(anchors, anchor_grid)
- LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report
- else: #直接加载模型
- model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
-
- # 3.2.1 设置模型输入
- #**********************************************************************************************************************
- # Freeze 冻结层
- freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # layers to freeze
- for k, v in model.named_parameters():
- v.requires_grad = True # train all layers
- if any(x in k for x in freeze):
- LOGGER.info(f'freezing {k}')
- v.requires_grad = False #不进行梯度计算
-
- # Image size
- gs = max(int(model.stride.max()), 32) # grid size (max stride)
- imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple
-
- # Batch size
- if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size
- batch_size = check_train_batch_size(model, imgsz)
- loggers.on_params_update({"batch_size": batch_size})
- # 3.2.2 优化器设置
- #**********************************************************************************************************************
- # Optimizer 优化器设置
- nbs = 64 # nominal batch size batch size为16 nbs为64 模型累计4次之后更新一次模型,变相扩大batch_size
- accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
- # 根据accumulate设置权重衰减系数
- hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay
- LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}")
-
- # 将模型分成三组(weight,bias,其他所有参数)进行优化
- g0, g1, g2 = [], [], [] # optimizer parameter groups
- for v in model.modules():
- if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias
- g2.append(v.bias)
- if isinstance(v, nn.BatchNorm2d): # weight (no decay)
- g0.append(v.weight)
- elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): # weight (with decay)
- g1.append(v.weight)
- # 选用优化器,并设置pg0的优化方式
- if opt.optimizer == 'Adam':
- optimizer = Adam(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
- elif opt.optimizer == 'AdamW':
- optimizer = AdamW(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
- else:
- optimizer = SGD(g0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
- # 设置weight的优化方式
- optimizer.add_param_group({'params': g1, 'weight_decay': hyp['weight_decay']}) # add g1 with weight_decay
- # 设置biases的优化方式
- optimizer.add_param_group({'params': g2}) # add g2 (biases)
- # 打印优化信息
- LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups "
- f"{len(g0)} weight (no decay), {len(g1)} weight, {len(g2)} bias")
- del g0, g1, g2
- # 3.2.3 模型其他功能选择
- #**********************************************************************************************************************
- # Scheduler 设置学习率的衰减 余弦退火调整
- if opt.cos_lr:
- lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
- else:
- lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
- scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs)
-
- # EMA
- ema = ModelEMA(model) if RANK in [-1, 0] else None
-
- # Resume 断点续训
- start_epoch, best_fitness = 0, 0.0
- if pretrained:
- # Optimizer
- if ckpt['optimizer'] is not None:
- optimizer.load_state_dict(ckpt['optimizer'])
- best_fitness = ckpt['best_fitness']
-
- # EMA 指数移动平均:一种给予近期数据更高权重的平均方法
- if ema and ckpt.get('ema'):
- ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
- ema.updates = ckpt['updates']
-
- # Epochs
- start_epoch = ckpt['epoch'] + 1
- if resume:
- assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.'
- if epochs < start_epoch:
- LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs.")
- epochs += ckpt['epoch'] # finetune additional epochs
-
- del ckpt, csd
-
- # DP mode 是否有分布式训练
- if cuda and RANK == -1 and torch.cuda.device_count() > 1:
- LOGGER.warning('WARNING: DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n'
- 'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.')
- model = torch.nn.DataParallel(model)
-
- # SyncBatchNorm 跨卡同步
- if opt.sync_bn and cuda and RANK != -1:
- model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
- LOGGER.info('Using SyncBatchNorm()')
- #**********************************************************************************************************************
- # 3.3 数据集预处理 *
- #**********************************************************************************************************************
- # Trainloader 数据处理过程
-
- # 3.3.1 创建数据集
- #**********************************************************************************************************************
- #创建训练集
- train_loader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls,
- hyp=hyp, augment=True, cache=None if opt.cache == 'val' else opt.cache,
- rect=opt.rect, rank=LOCAL_RANK, workers=workers,
- image_weights=opt.image_weights, quad=opt.quad,
- prefix=colorstr('train: '), shuffle=True)
- # 获取标签中最大的类别值与类别数做比较
- mlc = int(np.concatenate(dataset.labels, 0)[:, 0].max()) # max label class
- nb = len(train_loader) # number of batches
- # 如果小于则出现问题
- assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'
-
- # Process 0
- if RANK in [-1, 0]:
- # 创建测试集
- val_loader = create_dataloader(val_path, imgsz, batch_size // WORLD_SIZE * 2, gs, single_cls,
- hyp=hyp, cache=None if noval else opt.cache,
- rect=True, rank=-1, workers=workers * 2, pad=0.5,
- prefix=colorstr('val: '))[0]
-
- if not resume:
- labels = np.concatenate(dataset.labels, 0) #目标框数,不是图片数
- # c = torch.tensor(labels[:, 0]) # classes
- # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
- # model._initialize_biases(cf.to(device))
- if plots:
- plot_labels(labels, names, save_dir)
- # 3.3.1 计算anchor
- #**********************************************************************************************************************
- # Anchors 计算最佳anchor
- if not opt.noautoanchor:
- check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
- model.half().float() # pre-reduce anchor precision
-
- callbacks.run('on_pretrain_routine_end')
-
- # DDP mode
- if cuda and RANK != -1:
- model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)
- # 3.3.2 根据数据分布设置类别训练权重
- #**********************************************************************************************************************
- # Model attributes 根据自己类别数设置分类损失的系数
- nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps)
- hyp['box'] *= 3 / nl # scale to layers
- hyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layers
- hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers
- hyp['label_smoothing'] = opt.label_smoothing
- #设置模型的类别和超参数
- model.nc = nc # attach number of classes to model
- model.hyp = hyp # attach hyperparameters to model
- # 从训练的样本标签得到类别权重 和数量成反比
- model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
- model.names = names #获取类别的名字
- #**********************************************************************************************************************
- # 3.4 模型训练 *
- #**********************************************************************************************************************
- # Start training 开始训练部分
- # 3.4.1 训练初始化
- #**********************************************************************************************************************
- t0 = time.time() #获取当前时间
- # 获取热身训练的迭代次数
- nw = max(round(hyp['warmup_epochs'] * nb), 100) # number of warmup iterations, max(3 epochs, 100 iterations)
- # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
- last_opt_step = -1
- # 初始化 map和result
- maps = np.zeros(nc) # mAP per class
- results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
- # 设置学习率衰减所进行到的轮次 目的是打断训练后,--resume也能接着衰减学习率训练
- scheduler.last_epoch = start_epoch - 1 # do not move
- # 通过torch自带的api设置混合精度训练
- scaler = amp.GradScaler(enabled=cuda) #训练开始时实例化一个GradScaler对象
- stopper = EarlyStopping(patience=opt.patience)
- compute_loss = ComputeLoss(model) # init loss class
- # 打印信息
- LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
- f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
- f"Logging results to {colorstr('bold', save_dir)}\n"
- f'Starting training for {epochs} epochs...')
- # 3.4.2 训练过程
- #**********************************************************************************************************************
- # 开始训练
- for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
- model.train()
-
- # Update image weights (optional, single-GPU only)
- if opt.image_weights: #图片采样
- # 获取图片采样的权重
- cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
- iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
- dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
-
- # Update mosaic border (optional)
- # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
- # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
-
- # 初始化训练时打印的平均损失信息
- mloss = torch.zeros(3, device=device) # mean losses
- if RANK != -1:
- train_loader.sampler.set_epoch(epoch)
- pbar = enumerate(train_loader)
- LOGGER.info(('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size'))
- if RANK in [-1, 0]:
- # 通过tqdm创建进度条,方便训练信息的展示
- pbar = tqdm(pbar, total=nb, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
- optimizer.zero_grad() #梯度训练
- for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
- # 计算迭代次数
- ni = i + nb * epoch # number integrated batches (since train start)
- imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0
-
- # Warmup
- if ni <= nw:
- xi = [0, nw] # x interp
- # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
- accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
- for j, x in enumerate(optimizer.param_groups):
- # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
- '''
- bias的学习率从0.1下降到基准学习率lr*lf(epoch)
- 其他的参数学习率从0增加到lr*lf(epoch)
- lf是余弦退火衰减函数
- '''
- x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
- #动量momentum也从0.9慢慢变到hyp
- if 'momentum' in x:
- x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
-
- # Multi-scale 多尺度训练 尺寸变为imgsz * 0.5, imgsz * 1.5 + gs随机选取尺寸
- if opt.multi_scale:
- sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
- sf = sz / max(imgs.shape[2:]) # scale factor
- if sf != 1:
- ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
- imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
-
- # Forward 前向传播
- with amp.autocast(enabled=cuda):
- pred = model(imgs) # forward 把图片送入前向传播得到预测值
- # 计算loss
- loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
- if RANK != -1:
- loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
- if opt.quad:
- loss *= 4.
-
- # Backward 反向传播
- scaler.scale(loss).backward()# scale(loss)是为了梯度放大
-
- # Optimize
- if ni - last_opt_step >= accumulate: #模型反向传播accumulate之后再根据累计值更新一次参数
- scaler.step(optimizer) # optimizer.step
- scaler.update()
- optimizer.zero_grad() #梯度清0
- if ema:
- ema.update(model)
- last_opt_step = ni
-
- # Log 打印信息
- if RANK in [-1, 0]:
- mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
- mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
- # 通过进度条显示信息
- pbar.set_description(('%10s' * 2 + '%10.4g' * 5) % (
- f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
- callbacks.run('on_train_batch_end', ni, model, imgs, targets, paths, plots, opt.sync_bn)
- if callbacks.stop_training:
- return
- # end batch ------------------------------------------------------------------------------------------------
-
- # Scheduler
- # batch结束后进行学习率衰减
- lr = [x['lr'] for x in optimizer.param_groups] # for loggers
- scheduler.step() #对lr进行调整
- # 3.4.2 训练完成保存模型
- #**********************************************************************************************************************
- if RANK in [-1, 0]:
- # mAP
- callbacks.run('on_train_epoch_end', epoch=epoch)
- ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
- # 判断是否是最后一轮
- final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
- # 对测试集进行测试,计算指标
- if not noval or final_epoch: # Calculate mAP
- results, maps, _ = val.run(data_dict,
- batch_size=batch_size // WORLD_SIZE * 2,
- imgsz=imgsz,
- model=ema.ema,
- single_cls=single_cls,
- dataloader=val_loader,
- save_dir=save_dir,
- plots=False,
- callbacks=callbacks,
- compute_loss=compute_loss)
-
- # Update best mAP
- fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
- if fi > best_fitness:
- best_fitness = fi
- log_vals = list(mloss) + list(results) + lr
- callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)
-
- # Save model 保存模型
- if (not nosave) or (final_epoch and not evolve): # if save
- ckpt = {'epoch': epoch,
- 'best_fitness': best_fitness,
- 'model': deepcopy(de_parallel(model)).half(),
- 'ema': deepcopy(ema.ema).half(),
- 'updates': ema.updates,
- 'optimizer': optimizer.state_dict(),
- 'wandb_id': loggers.wandb.wandb_run.id if loggers.wandb else None,
- 'date': datetime.now().isoformat()}
-
- # Save last, best and delete
- torch.save(ckpt, last)
- if best_fitness == fi:
- torch.save(ckpt, best)
- if (epoch > 0) and (opt.save_period > 0) and (epoch % opt.save_period == 0):
- torch.save(ckpt, w / f'epoch{epoch}.pt')
- del ckpt
- callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)
-
- # Stop Single-GPU
- if RANK == -1 and stopper(epoch=epoch, fitness=fi):
- break
-
- # Stop DDP TODO: known issues shttps://github.com/ultralytics/yolov5/pull/4576
- # stop = stopper(epoch=epoch, fitness=fi)
- # if RANK == 0:
- # dist.broadcast_object_list([stop], 0) # broadcast 'stop' to all ranks
-
- # Stop DPP
- # with torch_distributed_zero_first(RANK):
- # if stop:
- # break # must break all DDP ranks
-
- # end epoch ----------------------------------------------------------------------------------------------------
- # end training -----------------------------------------------------------------------------------------------------
- # 3.4.2 模型压缩内存释放
- #**********************************************************************************************************************
- if RANK in [-1, 0]:
- LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
- for f in last, best:
- if f.exists():
- strip_optimizer(f) # strip optimizers 训练完成后会用strip_optimizer将优化器信息去除,并将32位变成16为浮点减少模型大小,提高前向推理速度
- if f is best:
- LOGGER.info(f'\nValidating {f}...')
- results, _, _ = val.run(data_dict,
- batch_size=batch_size // WORLD_SIZE * 2,
- imgsz=imgsz,
- model=attempt_load(f, device).half(),
- iou_thres=0.65 if is_coco else 0.60, # best pycocotools results at 0.65
- single_cls=single_cls,
- dataloader=val_loader,
- save_dir=save_dir,
- save_json=is_coco,
- verbose=True,
- plots=True,
- callbacks=callbacks,
- compute_loss=compute_loss) # val best model with plots
- if is_coco:
- callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)
-
- callbacks.run('on_train_end', last, best, plots, epoch, results)
- LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
-
- torch.cuda.empty_cache() #显存释放
- return results
-
- #**********************************************************************************************************************
- # *
- # 一、设置模型参数 *
- # *
- #**********************************************************************************************************************
- def parse_opt(known=False):
- parser = argparse.ArgumentParser()
- parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path')#模型参数初始化
- parser.add_argument('--cfg', type=str, default='/home/cxl/yolov5/src/yolov5/models/yolov5s.yaml', help='model.yaml path')#训练模型
- parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
- parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')#超参数设置,对模型微调
-
- parser.add_argument('--epochs', type=int, default=50)
- parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
- parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')#训练尺寸
- parser.add_argument('--rect', action='store_true', help='rectangular training')#减少图片填充
- parser.add_argument('--resume', nargs='?', const=True, default="", help='resume most recent training')#利用保存的模型继续训练
- parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
- parser.add_argument('--noval', action='store_true', help='only validate final epoch')
- parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')#铆点的模型画框
- parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')#超参数净化
- parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
- parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')
- parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')#对上一轮训练不好的图片加一些权重
- parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
- parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')#对图像变换
- parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')#单类别多类别
- parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer')
- parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
- parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')#线程
- parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')#保存路径
- parser.add_argument('--name', default='exp', help='save to project/name')
- parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')#保存到新的文件夹
- parser.add_argument('--quad', action='store_true', help='quad dataloader')
- parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')#训练学习率的设置,线性下降
- parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
- parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
- parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
- parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
- parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
-
- # Weights & Biases arguments
- parser.add_argument('--entity', default=None, help='W&B: Entity')
- parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='W&B: Upload data, "val" option')
- parser.add_argument('--bbox_interval', type=int, default=-1, help='W&B: Set bounding-box image logging interval')
- #parser.add_argument('--artifact_alias', type=str, default='latest', help='W&B: Version of dataset artifact to use')
-
- opt = parser.parse_known_args()[0] if known else parser.parse_args()
- return opt
-
- #**********************************************************************************************************************
- # *
- # 二、模型选择 *
- # *
- #**********************************************************************************************************************
- def main(opt, callbacks=Callbacks()):
- # Checks
- if RANK in [-1, 0]:
- print_args(FILE.stem, opt)
- check_git_status()
- check_requirements(exclude=['thop']) #检查代码是否是最新的
-
- # Resume python train.py --resume
- if opt.resume and not check_wandb_resume(opt) and not opt.evolve: # resume an interrupted run 是否是断点续训,如果是执行下面语句继续训练
- ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path 获取runs文件夹中最近的last.pt
- assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
- with open(Path(ckpt).parent.parent / 'opt.yaml', errors='ignore') as f:
- opt = argparse.Namespace(**yaml.safe_load(f)) # replace
- opt.cfg, opt.weights, opt.resume = '', ckpt, True # reinstate
- LOGGER.info(f'Resuming training from {ckpt}')
- else:
- opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \
- check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project) # checks 检查配置文件信息
- assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
- if opt.evolve:
- if opt.project == str(ROOT / 'runs/train'): # if default project name, rename to runs/evolve
- opt.project = str(ROOT / 'runs/evolve')
- opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume
- opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
-
- # DDP mode 选择设备
- device = select_device(opt.device, batch_size=opt.batch_size)
- if LOCAL_RANK != -1: #不是-1就是一个gpu
- msg = 'is not compatible with YOLOv5 Multi-GPU DDP training'
- assert not opt.image_weights, f'--image-weights {msg}'
- assert not opt.evolve, f'--evolve {msg}'
- assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size'
- assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'
- assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
- torch.cuda.set_device(LOCAL_RANK)
- device = torch.device('cuda', LOCAL_RANK) #根据gpu编号选择设备
- # 初始化进程
- dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
-
- # Train
- # 判断是否超参进化 默认flase
- if not opt.evolve:
- train(opt.hyp, opt, device, callbacks)
- if WORLD_SIZE > 1 and RANK == 0:
- LOGGER.info('Destroying process group... ') #创建tensorboard
- dist.destroy_process_group()
-
- # Evolve hyperparameters (optional)
- else: 超参进化 类似遗传算法
- # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
- #超参进化列表,括号里分别为(突变规模、最小值、最大值)
- meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
- 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
- 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
- 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
- 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
- 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
- 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
- 'box': (1, 0.02, 0.2), # box loss gain
- 'cls': (1, 0.2, 4.0), # cls loss gain
- 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
- 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
- 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
- 'iou_t': (0, 0.1, 0.7), # IoU training threshold
- 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
- 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
- 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
- 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
- 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
- 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
- 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
- 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
- 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
- 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
- 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
- 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
- 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
- 'mosaic': (1, 0.0, 1.0), # image mixup (probability)
- 'mixup': (1, 0.0, 1.0), # image mixup (probability)
- 'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability)
-
- with open(opt.hyp, errors='ignore') as f:
- hyp = yaml.safe_load(f) # load hyps dict
- if 'anchors' not in hyp: # anchors commented in hyp.yaml
- hyp['anchors'] = 3
- opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch
- # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
- #超参进化的结果保存在以下文件中
- evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'
- if opt.bucket:
- os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {evolve_csv}') # download evolve.csv if exists
-
- '''
- 默认进化300代
- 根据之前训练时的hyp来搞定一个base hyp再进行突变
- '''
- for _ in range(opt.evolve): # generations to evolve 进化代数
- if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate
- # 选择进化方式
- parent = 'single' # parent selection method: 'single' or 'weighted'
- # 加载evolve.txt
- x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1)
- # 选取至多前5次进化的结果
- n = min(5, len(x)) # number of previous results to consider
- x = x[np.argsort(-fitness(x))][:n] # top n mutations
- # 根据results计算hyp权重
- w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0)
- # 根据不同进化方式获得base hyp
- if parent == 'single' or len(x) == 1:
- # x = x[random.randint(0, n - 1)] # random selection
- x = x[random.choices(range(n), weights=w)[0]] # 1、weighted selection
- elif parent == 'weighted':
- x = (x * w.reshape(n, 1)).sum(0) / w.sum() # 2、weighted combination
-
- # Mutate 超参数进化
- mp, s = 0.8, 0.2 # mutation probability, sigma
- npr = np.random
- npr.seed(int(time.time()))
- # 获取突变初始值
- g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1
- ng = len(meta)
- v = np.ones(ng)
- #设置突变
- while all(v == 1): # mutate until a change occurs (prevent duplicates)
- v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
- # 将突变添加到base hyp上
- for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
- hyp[k] = float(x[i + 7] * v[i]) # mutate
- # 修剪hyp在规定范围内
- # Constrain to limits
- for k, v in meta.items():
- hyp[k] = max(hyp[k], v[1]) # lower limit
- hyp[k] = min(hyp[k], v[2]) # upper limit
- hyp[k] = round(hyp[k], 5) # significant digits
-
- # Train mutation
- # 训练
- results = train(hyp.copy(), opt, device, callbacks)
- callbacks = Callbacks()
- # Write mutation results 打印图片结果
- print_mutation(results, hyp.copy(), save_dir, opt.bucket)
-
- # Plot results
- plot_evolve(evolve_csv)
- LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n'
- f"Results saved to {colorstr('bold', save_dir)}\n"
- f'Usage example: $ python train.py --hyp {evolve_yaml}')
-
-
- def run(**kwargs):
- # Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')
- opt = parse_opt(True)
- for k, v in kwargs.items():
- setattr(opt, k, v)
- main(opt)
- return opt
-
-
- if __name__ == "__main__":
- opt = parse_opt()
- main(opt)