一、 简单来说就是当时设计缓存时存在问题,导致大部分缓存数据在相同时间内,大量过期。这样就会把压力全部给了数据库。
二、Redis 缓存实例发生故障宕机。
1、解决热点数据集中失效
针对大量数据集中失效带来的缓存雪崩问题,可以用下面几种方案解决:
2、解决Redis实例宕机问题
方案一: 实现服务熔断或者请求限流机制
我们通过监测Redis以及数据库实例所在服务器负载指标,如果发现Redis服务宕机,导致数据库的负载压力增大,我们可以启动服务熔断机制,暂停对缓存服务的访问。
但是这种方法对业务应用的影响比较大,我们也可以通过限流的方式降低这种影响。
举个例子:比如业务系统正常运行时,请求入口每秒最大允许进入的请求数是1万个,其中9000请求个可以被缓存处理,余下1000个会发送给数据库处理。
一旦发生雪崩,数据库每秒处理的请求突然增加到1万个,此时我们就可以启动限流机制。在前端请求入口处,只允许每秒进入1000个请求,其他的直接拒绝掉。这样就可以避免大量并发请求发送给数据库。
方案二:事前预防
通过主从节点的方式构建 Redis 缓存高可靠集群。 如果 Redis 缓存的主节点故障宕机了,从节点还可以切换成为主节点,继续提供缓存服务,避免了由于缓存实例宕机而导致的缓存雪崩问题。
缓存穿透指用户要访问的数据既不在缓存中也不在数据库中,导致用户每次请求该数据时都要去数据库查一遍,然后返回空。如果有恶意攻击者不断请求这种系统不存在的数据,会导致数据库压力过大,严重会击垮数据库。
某个热点 key,在缓存过期的一瞬间,同时有大量的请求打进来,由于此时缓存过期了,所以请求最终都会走到数据库,造成瞬时数据库请求量大、压力骤增,导致数据库存在被打挂的风险。
1.加互斥锁。当热点key过期后,大量的请求涌入时,只有第一个请求能获取锁并阻塞,此时该请求查询数据库,并将查询结果写入redis后释放锁。后续的请求直接走缓存。
2.设置缓存不过期或者后台有线程一直给热点数据续期(redission)。