• Python数据分析与机器学习44-Python生成时间序列


    一. Python 生成时间序列

    时间序列

    • 时间戳(timestamp)
    • 固定周期(period)
    • 时间间隔(interval)

    date_range

    • 可以指定开始时间与周期
    • H:小时
    • D:天
    • M:月

    二.生成不同间隔的时间序列

    代码:

    import pandas as pd
    import numpy as np
    import datetime as dt
    
    # 从2022-07-01开始,间隔3天,生成10条 时间数据
    rng = pd.date_range('2022-07-01', periods = 10, freq = '3D')
    print(rng)
    print("#####################")
    
    # 指定开始时间,结束时间  以及频率
    data=pd.date_range('2022-01-01','2023-01-01',freq='M')
    print(data)
    print("#####################")
    
    # 从2022-01-01开始,间隔1天,生成20条 时间数据
    time=pd.Series(np.random.randn(20),
               index=pd.date_range(dt.datetime(2022,1,1),periods=20))
    print(time)
    print("#####################")
    
    # 不规则的时间间隔
    p1 = pd.period_range('2022-01-01 10:10', freq = '25H', periods = 10)
    print(p1)
    print("######################################")
    
    # 指定索引
    rng = pd.date_range('2022 Jul 1', periods = 10, freq = 'D')
    print(pd.Series(range(len(rng)), index = rng))
    print("######################################")
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29

    测试记录:

    DatetimeIndex(['2022-07-01', '2022-07-04', '2022-07-07', '2022-07-10',
                   '2022-07-13', '2022-07-16', '2022-07-19', '2022-07-22',
                   '2022-07-25', '2022-07-28'],
                  dtype='datetime64[ns]', freq='3D')
    #####################
    DatetimeIndex(['2022-01-31', '2022-02-28', '2022-03-31', '2022-04-30',
                   '2022-05-31', '2022-06-30', '2022-07-31', '2022-08-31',
                   '2022-09-30', '2022-10-31', '2022-11-30', '2022-12-31'],
                  dtype='datetime64[ns]', freq='M')
    #####################
    2022-01-01   -0.957412
    2022-01-02   -0.333720
    2022-01-03    1.079960
    2022-01-04    0.050675
    2022-01-05    0.270313
    2022-01-06   -0.222715
    2022-01-07   -0.560258
    2022-01-08    1.009430
    2022-01-09   -0.678157
    2022-01-10    0.213557
    2022-01-11   -0.720791
    2022-01-12    0.332096
    2022-01-13   -0.986449
    2022-01-14   -0.357303
    2022-01-15   -0.559618
    2022-01-16    0.480281
    2022-01-17   -0.443998
    2022-01-18    1.541631
    2022-01-19   -0.094559
    2022-01-20    1.875012
    Freq: D, dtype: float64
    #####################
    PeriodIndex(['2022-01-01 10:00', '2022-01-02 11:00', '2022-01-03 12:00',
                 '2022-01-04 13:00', '2022-01-05 14:00', '2022-01-06 15:00',
                 '2022-01-07 16:00', '2022-01-08 17:00', '2022-01-09 18:00',
                 '2022-01-10 19:00'],
                dtype='period[25H]', freq='25H')
    ######################################
    2022-07-01    0
    2022-07-02    1
    2022-07-03    2
    2022-07-04    3
    2022-07-05    4
    2022-07-06    5
    2022-07-07    6
    2022-07-08    7
    2022-07-09    8
    2022-07-10    9
    Freq: D, dtype: int64
    ######################################
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50

    三. 截断时间段

    代码:

    import pandas as pd
    import numpy as np
    import datetime as dt
    
    # 从2022-01-01开始,间隔1天,生成20条 时间数据
    time=pd.Series(np.random.randn(20),
               index=pd.date_range(dt.datetime(2022,1,1),periods=20))
    print(time)
    print("#####################")
    
    # 只输出2022-01-10 之后的数据
    print(time.truncate(before='2022-1-10'))
    print("#####################")
    
    # 只输出2022-01-10 之后的数据
    print(time.truncate(after='2022-1-10'))
    print("#####################")
    
    # 输出区间段
    print(time['2022-01-15':'2022-01-20'])
    print("#####################")
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21

    测试记录:

    2022-01-01   -0.203552
    2022-01-02   -1.035483
    2022-01-03    0.252587
    2022-01-04   -1.046993
    2022-01-05    0.152435
    2022-01-06   -0.534518
    2022-01-07    0.770170
    2022-01-08   -0.038129
    2022-01-09    0.531485
    2022-01-10    0.499937
    2022-01-11    0.815295
    2022-01-12    2.315740
    2022-01-13   -0.443379
    2022-01-14   -0.689247
    2022-01-15    0.667250
    2022-01-16   -2.067246
    2022-01-17   -0.105151
    2022-01-18   -0.420562
    2022-01-19    1.012943
    2022-01-20    0.509710
    Freq: D, dtype: float64
    #####################
    2022-01-10    0.499937
    2022-01-11    0.815295
    2022-01-12    2.315740
    2022-01-13   -0.443379
    2022-01-14   -0.689247
    2022-01-15    0.667250
    2022-01-16   -2.067246
    2022-01-17   -0.105151
    2022-01-18   -0.420562
    2022-01-19    1.012943
    2022-01-20    0.509710
    Freq: D, dtype: float64
    #####################
    2022-01-01   -0.203552
    2022-01-02   -1.035483
    2022-01-03    0.252587
    2022-01-04   -1.046993
    2022-01-05    0.152435
    2022-01-06   -0.534518
    2022-01-07    0.770170
    2022-01-08   -0.038129
    2022-01-09    0.531485
    2022-01-10    0.499937
    Freq: D, dtype: float64
    #####################
    2022-01-15    0.667250
    2022-01-16   -2.067246
    2022-01-17   -0.105151
    2022-01-18   -0.420562
    2022-01-19    1.012943
    2022-01-20    0.509710
    Freq: D, dtype: float64
    #####################
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55

    四. 时间戳及时间计算

    代码:

    import pandas as pd
    import numpy as np
    import datetime as dt
    
    #时间戳
    print(pd.Timestamp('2022-07-25'))
    print(pd.Timestamp('2022-07-25 10'))
    print(pd.Timestamp('2022-07-25 10:15'))
    print("######################################")
    
    #时间区间
    print(pd.Period('2022-01'))
    print(pd.Period('2022-01-01'))
    print("######################################")
    
    #时间计算
    #help(pd.Timedelta)
    print(pd.Period('2022-01-01 10:10') + pd.Timedelta('1 day'))
    print(pd.Period('2022-01-01 10:10:10') + pd.Timedelta('1 s'))
    print("######################################")
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20

    测试记录:

    2022-07-25 00:00:00
    2022-07-25 10:00:00
    2022-07-25 10:15:00
    ######################################
    2022-01
    2022-01-01
    ######################################
    2022-01-02 10:10
    2022-01-01 10:10:11
    ######################################
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10

    五. 数据重采样

    数据重采样

    • 时间数据由一个频率转换到另一个频率
    • 降采样
    • 升采样

    代码:

    import pandas as pd
    import numpy as np
    import datetime as dt
    
    # 生成时间序列
    rng = pd.date_range('1/1/2022', periods=90, freq='D')
    ts = pd.Series(np.random.randn(len(rng)), index=rng)
    #print(ts.head())
    
    # 按月进行汇总
    print(ts.resample('M').sum())
    print("######################################")
    # 按3天进行汇总
    print(ts.resample('3D').sum())
    print("######################################")
    #  求3天的平均值
    day3Ts = ts.resample('3D').mean()
    print(day3Ts)
    print("######################################")
    # 将3天的时间序列转为1天的,结果发现很多空值
    # 插值方法:
    # 1. ffill 空值取前面的值
    # 2. bfill 空值取后面的值
    # 3. interpolate 线性取值
    print(day3Ts.resample('D').asfreq())
    print("######################################")
    print(day3Ts.resample('D').ffill(1))
    print("######################################")
    print(day3Ts.resample('D').bfill(1))
    print("######################################")
    print(day3Ts.resample('D').interpolate('linear'))
    print("######################################")
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32

    测试记录:

    2022-01-31    0.904974
    2022-02-28   -1.930083
    2022-03-31    7.617911
    Freq: M, dtype: float64
    ######################################
    2022-01-01    0.104413
    2022-01-04    2.255400
    2022-01-07   -0.993552
    2022-01-10    1.234344
    2022-01-13   -0.621381
    2022-01-16   -0.072830
    2022-01-19   -0.215890
    2022-01-22    0.050444
    2022-01-25   -1.794619
    2022-01-28    0.030952
    2022-01-31   -1.022843
    2022-02-03   -1.035522
    2022-02-06   -1.124857
    2022-02-09    1.915781
    2022-02-12    0.263875
    2022-02-15    0.927552
    2022-02-18    0.760483
    2022-02-21   -2.771669
    2022-02-24    2.157336
    2022-02-27    0.107964
    2022-03-02   -0.852413
    2022-03-05    1.252628
    2022-03-08   -0.529793
    2022-03-11    2.110139
    2022-03-14    1.624062
    2022-03-17   -0.241604
    2022-03-20   -2.165326
    2022-03-23    2.975993
    2022-03-26    1.389412
    2022-03-29    0.874324
    dtype: float64
    ######################################
    2022-01-01    0.034804
    2022-01-04    0.751800
    2022-01-07   -0.331184
    2022-01-10    0.411448
    2022-01-13   -0.207127
    2022-01-16   -0.024277
    2022-01-19   -0.071963
    2022-01-22    0.016815
    2022-01-25   -0.598206
    2022-01-28    0.010317
    2022-01-31   -0.340948
    2022-02-03   -0.345174
    2022-02-06   -0.374952
    2022-02-09    0.638594
    2022-02-12    0.087958
    2022-02-15    0.309184
    2022-02-18    0.253494
    2022-02-21   -0.923890
    2022-02-24    0.719112
    2022-02-27    0.035988
    2022-03-02   -0.284138
    2022-03-05    0.417543
    2022-03-08   -0.176598
    2022-03-11    0.703380
    2022-03-14    0.541354
    2022-03-17   -0.080535
    2022-03-20   -0.721775
    2022-03-23    0.991998
    2022-03-26    0.463137
    2022-03-29    0.291441
    dtype: float64
    ######################################
    2022-01-01    0.034804
    2022-01-02         NaN
    2022-01-03         NaN
    2022-01-04    0.751800
    2022-01-05         NaN
    2022-01-06         NaN
    2022-01-07   -0.331184
    2022-01-08         NaN
    2022-01-09         NaN
    2022-01-10    0.411448
    2022-01-11         NaN
    2022-01-12         NaN
    2022-01-13   -0.207127
    2022-01-14         NaN
    2022-01-15         NaN
    2022-01-16   -0.024277
    2022-01-17         NaN
    2022-01-18         NaN
    2022-01-19   -0.071963
    2022-01-20         NaN
    2022-01-21         NaN
    2022-01-22    0.016815
    2022-01-23         NaN
    2022-01-24         NaN
    2022-01-25   -0.598206
    2022-01-26         NaN
    2022-01-27         NaN
    2022-01-28    0.010317
    2022-01-29         NaN
    2022-01-30         NaN
                    ...   
    2022-02-28         NaN
    2022-03-01         NaN
    2022-03-02   -0.284138
    2022-03-03         NaN
    2022-03-04         NaN
    2022-03-05    0.417543
    2022-03-06         NaN
    2022-03-07         NaN
    2022-03-08   -0.176598
    2022-03-09         NaN
    2022-03-10         NaN
    2022-03-11    0.703380
    2022-03-12         NaN
    2022-03-13         NaN
    2022-03-14    0.541354
    2022-03-15         NaN
    2022-03-16         NaN
    2022-03-17   -0.080535
    2022-03-18         NaN
    2022-03-19         NaN
    2022-03-20   -0.721775
    2022-03-21         NaN
    2022-03-22         NaN
    2022-03-23    0.991998
    2022-03-24         NaN
    2022-03-25         NaN
    2022-03-26    0.463137
    2022-03-27         NaN
    2022-03-28         NaN
    2022-03-29    0.291441
    Freq: D, Length: 88, dtype: float64
    ######################################
    2022-01-01    0.034804
    2022-01-02    0.034804
    2022-01-03         NaN
    2022-01-04    0.751800
    2022-01-05    0.751800
    2022-01-06         NaN
    2022-01-07   -0.331184
    2022-01-08   -0.331184
    2022-01-09         NaN
    2022-01-10    0.411448
    2022-01-11    0.411448
    2022-01-12         NaN
    2022-01-13   -0.207127
    2022-01-14   -0.207127
    2022-01-15         NaN
    2022-01-16   -0.024277
    2022-01-17   -0.024277
    2022-01-18         NaN
    2022-01-19   -0.071963
    2022-01-20   -0.071963
    2022-01-21         NaN
    2022-01-22    0.016815
    2022-01-23    0.016815
    2022-01-24         NaN
    2022-01-25   -0.598206
    2022-01-26   -0.598206
    2022-01-27         NaN
    2022-01-28    0.010317
    2022-01-29    0.010317
    2022-01-30         NaN
                    ...   
    2022-02-28    0.035988
    2022-03-01         NaN
    2022-03-02   -0.284138
    2022-03-03   -0.284138
    2022-03-04         NaN
    2022-03-05    0.417543
    2022-03-06    0.417543
    2022-03-07         NaN
    2022-03-08   -0.176598
    2022-03-09   -0.176598
    2022-03-10         NaN
    2022-03-11    0.703380
    2022-03-12    0.703380
    2022-03-13         NaN
    2022-03-14    0.541354
    2022-03-15    0.541354
    2022-03-16         NaN
    2022-03-17   -0.080535
    2022-03-18   -0.080535
    2022-03-19         NaN
    2022-03-20   -0.721775
    2022-03-21   -0.721775
    2022-03-22         NaN
    2022-03-23    0.991998
    2022-03-24    0.991998
    2022-03-25         NaN
    2022-03-26    0.463137
    2022-03-27    0.463137
    2022-03-28         NaN
    2022-03-29    0.291441
    Freq: D, Length: 88, dtype: float64
    ######################################
    2022-01-01    0.034804
    2022-01-02         NaN
    2022-01-03    0.751800
    2022-01-04    0.751800
    2022-01-05         NaN
    2022-01-06   -0.331184
    2022-01-07   -0.331184
    2022-01-08         NaN
    2022-01-09    0.411448
    2022-01-10    0.411448
    2022-01-11         NaN
    2022-01-12   -0.207127
    2022-01-13   -0.207127
    2022-01-14         NaN
    2022-01-15   -0.024277
    2022-01-16   -0.024277
    2022-01-17         NaN
    2022-01-18   -0.071963
    2022-01-19   -0.071963
    2022-01-20         NaN
    2022-01-21    0.016815
    2022-01-22    0.016815
    2022-01-23         NaN
    2022-01-24   -0.598206
    2022-01-25   -0.598206
    2022-01-26         NaN
    2022-01-27    0.010317
    2022-01-28    0.010317
    2022-01-29         NaN
    2022-01-30   -0.340948
                    ...   
    2022-02-28         NaN
    2022-03-01   -0.284138
    2022-03-02   -0.284138
    2022-03-03         NaN
    2022-03-04    0.417543
    2022-03-05    0.417543
    2022-03-06         NaN
    2022-03-07   -0.176598
    2022-03-08   -0.176598
    2022-03-09         NaN
    2022-03-10    0.703380
    2022-03-11    0.703380
    2022-03-12         NaN
    2022-03-13    0.541354
    2022-03-14    0.541354
    2022-03-15         NaN
    2022-03-16   -0.080535
    2022-03-17   -0.080535
    2022-03-18         NaN
    2022-03-19   -0.721775
    2022-03-20   -0.721775
    2022-03-21         NaN
    2022-03-22    0.991998
    2022-03-23    0.991998
    2022-03-24         NaN
    2022-03-25    0.463137
    2022-03-26    0.463137
    2022-03-27         NaN
    2022-03-28    0.291441
    2022-03-29    0.291441
    Freq: D, Length: 88, dtype: float64
    ######################################
    2022-01-01    0.034804
    2022-01-02    0.273803
    2022-01-03    0.512801
    2022-01-04    0.751800
    2022-01-05    0.390805
    2022-01-06    0.029811
    2022-01-07   -0.331184
    2022-01-08   -0.083640
    2022-01-09    0.163904
    2022-01-10    0.411448
    2022-01-11    0.205256
    2022-01-12   -0.000935
    2022-01-13   -0.207127
    2022-01-14   -0.146177
    2022-01-15   -0.085227
    2022-01-16   -0.024277
    2022-01-17   -0.040172
    2022-01-18   -0.056068
    2022-01-19   -0.071963
    2022-01-20   -0.042371
    2022-01-21   -0.012778
    2022-01-22    0.016815
    2022-01-23   -0.188192
    2022-01-24   -0.393199
    2022-01-25   -0.598206
    2022-01-26   -0.395365
    2022-01-27   -0.192524
    2022-01-28    0.010317
    2022-01-29   -0.106771
    2022-01-30   -0.223859
                    ...   
    2022-02-28   -0.070721
    2022-03-01   -0.177429
    2022-03-02   -0.284138
    2022-03-03   -0.050244
    2022-03-04    0.183649
    2022-03-05    0.417543
    2022-03-06    0.219496
    2022-03-07    0.021449
    2022-03-08   -0.176598
    2022-03-09    0.116728
    2022-03-10    0.410054
    2022-03-11    0.703380
    2022-03-12    0.649371
    2022-03-13    0.595363
    2022-03-14    0.541354
    2022-03-15    0.334058
    2022-03-16    0.126762
    2022-03-17   -0.080535
    2022-03-18   -0.294281
    2022-03-19   -0.508028
    2022-03-20   -0.721775
    2022-03-21   -0.150518
    2022-03-22    0.420740
    2022-03-23    0.991998
    2022-03-24    0.815711
    2022-03-25    0.639424
    2022-03-26    0.463137
    2022-03-27    0.405905
    2022-03-28    0.348673
    2022-03-29    0.291441
    Freq: D, Length: 88, dtype: float64
    ######################################
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
    • 210
    • 211
    • 212
    • 213
    • 214
    • 215
    • 216
    • 217
    • 218
    • 219
    • 220
    • 221
    • 222
    • 223
    • 224
    • 225
    • 226
    • 227
    • 228
    • 229
    • 230
    • 231
    • 232
    • 233
    • 234
    • 235
    • 236
    • 237
    • 238
    • 239
    • 240
    • 241
    • 242
    • 243
    • 244
    • 245
    • 246
    • 247
    • 248
    • 249
    • 250
    • 251
    • 252
    • 253
    • 254
    • 255
    • 256
    • 257
    • 258
    • 259
    • 260
    • 261
    • 262
    • 263
    • 264
    • 265
    • 266
    • 267
    • 268
    • 269
    • 270
    • 271
    • 272
    • 273
    • 274
    • 275
    • 276
    • 277
    • 278
    • 279
    • 280
    • 281
    • 282
    • 283
    • 284
    • 285
    • 286
    • 287
    • 288
    • 289
    • 290
    • 291
    • 292
    • 293
    • 294
    • 295
    • 296
    • 297
    • 298
    • 299
    • 300
    • 301
    • 302
    • 303
    • 304
    • 305
    • 306
    • 307
    • 308
    • 309
    • 310
    • 311
    • 312
    • 313
    • 314
    • 315
    • 316
    • 317
    • 318
    • 319
    • 320
    • 321

    六. 移动窗口函数

    代码:

    import matplotlib.pylab as plt
    import numpy as np
    import pandas as pd
    
    # 生成时间序列
    df = pd.Series(np.random.randn(600), index = pd.date_range('7/1/2022', freq = 'D', periods = 600))
    
    # 使用window函数
    r = df.rolling(window = 10)
    # 输出最近10个值的平均值
    print(print(r.mean()))
    
    
    # 画图
    plt.figure(figsize=(15, 5))
    
    df.plot(style='r')
    df.rolling(window=10).mean().plot(style='b')
    
    plt.show()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20

    测试记录:
    image.png

    参考:

    1. https://study.163.com/course/introduction.htm?courseId=1003590004#/courseDetail?tab=1
  • 相关阅读:
    IntelliJ IDEA 简介
    Gin 自定义控制器
    Linux:把进程/线程绑定到特定cpu核上运行
    Ai-WB2模组基于TCP的MQTT连接服务器使用示例
    vue2.x和vue3.x 环境相关配置
    关于深度学习一些疑惑的总结
    【数据结构】树与二叉树(九):二叉树的后序遍历(非递归算法NPO)
    textarea 让多行输入框 高度随内容变化
    package-info.java
    计网个人作业02
  • 原文地址:https://blog.csdn.net/u010520724/article/details/126135039