• 吴恩达作业ex5:Regularized Linear Regression and Bias v.s. Variance


    可视化与加载数据

    import numpy as np
    import scipy.io as sio
    from scipy.io import loadmat
    import scipy.optimize as opt
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    d=loadmat('ex5data1.mat')
    
    • 1
    d
    
    • 1
    {'__header__': b'MATLAB 5.0 MAT-file, Platform: GLNXA64, Created on: Fri Nov  4 22:27:26 2011',
     '__version__': '1.0',
     '__globals__': [],
     'X': array([[-15.93675813],
            [-29.15297922],
            [ 36.18954863],
            [ 37.49218733],
            [-48.05882945],
            [ -8.94145794],
            [ 15.30779289],
            [-34.70626581],
            [  1.38915437],
            [-44.38375985],
            [  7.01350208],
            [ 22.76274892]]),
     'y': array([[ 2.13431051],
            [ 1.17325668],
            [34.35910918],
            [36.83795516],
            [ 2.80896507],
            [ 2.12107248],
            [14.71026831],
            [ 2.61418439],
            [ 3.74017167],
            [ 3.73169131],
            [ 7.62765885],
            [22.7524283 ]]),
     'Xtest': array([[-33.31800399],
            [-37.91216403],
            [-51.20693795],
            [ -6.13259585],
            [ 21.26118327],
            [-40.31952949],
            [-14.54153167],
            [ 32.55976024],
            [ 13.39343255],
            [ 44.20988595],
            [ -1.14267768],
            [-12.76686065],
            [ 34.05450539],
            [ 39.22350028],
            [  1.97449674],
            [ 29.6217551 ],
            [-23.66962971],
            [ -9.01180139],
            [-55.94057091],
            [-35.70859752],
            [  9.51020533]]),
     'ytest': array([[ 3.31688953],
            [ 5.39768952],
            [ 0.13042984],
            [ 6.1925982 ],
            [17.08848712],
            [ 0.79950805],
            [ 2.82479183],
            [28.62123334],
            [17.04639081],
            [55.38437334],
            [ 4.07936733],
            [ 8.27039793],
            [31.32355102],
            [39.15906103],
            [ 8.08727989],
            [24.11134389],
            [ 2.4773548 ],
            [ 6.56606472],
            [ 6.0380888 ],
            [ 4.69273956],
            [10.83004606]]),
     'Xval': array([[-16.74653578],
            [-14.57747075],
            [ 34.51575866],
            [-47.01007574],
            [ 36.97511905],
            [-40.68611002],
            [ -4.47201098],
            [ 26.53363489],
            [-42.7976831 ],
            [ 25.37409938],
            [-31.10955398],
            [ 27.31176864],
            [ -3.26386201],
            [ -1.81827649],
            [-40.7196624 ],
            [-50.01324365],
            [-17.41177155],
            [  3.5881937 ],
            [  7.08548026],
            [ 46.28236902],
            [ 14.61228909]]),
     'yval': array([[ 4.17020201e+00],
            [ 4.06726280e+00],
            [ 3.18730676e+01],
            [ 1.06236562e+01],
            [ 3.18360213e+01],
            [ 4.95936972e+00],
            [ 4.45159880e+00],
            [ 2.22763185e+01],
            [-4.38738274e-05],
            [ 2.05038016e+01],
            [ 3.85834476e+00],
            [ 1.93650529e+01],
            [ 4.88376281e+00],
            [ 1.10971588e+01],
            [ 7.46170827e+00],
            [ 1.47693464e+00],
            [ 2.71916388e+00],
            [ 1.09269007e+01],
            [ 8.34871235e+00],
            [ 5.27819280e+01],
            [ 1.33573396e+01]])}
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111

    数据包括:

    • training set:X,y
    • cross validation: Xval,yval
    • test set:Xtest,ytest
    X, y, Xval, yval, Xtest, ytest = map(np.ravel, [d['X'], d['y'], d['Xval'], d['yval'], d['Xtest'], d['ytest']])
    
    • 1
    df = pd.DataFrame({'water_level':X, 'flow':y})
    df.head()
    
    • 1
    • 2
    water_levelflow
    0-15.9367582.134311
    1-29.1529791.173257
    236.18954934.359109
    337.49218736.837955
    4-48.0588292.808965
    #可视化
    sns.lmplot('water_level','flow',data=df,fit_reg=False)
    plt.show()
    
    • 1
    • 2
    • 3
    E:\Anaconda\lib\site-packages\seaborn\_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.
      warnings.warn(
    
    • 1
    • 2

    在这里插入图片描述

    Regularized linear regression cost function

    X, Xval, Xtest = [np.insert(x.reshape(x.shape[0], 1), 0, np.ones(x.shape[0]), axis=1) for x in (X, Xval, Xtest)]
    
    • 1
    def cost(theta,X,y):
        #input:参数值theta,数据X,标签y
        #output:代价函数
        
        #样本个数
        m=X.shape[0]
        
        #计算代价函数
        inner=X@theta-y
        square_sum=inner.T@inner
        cost=square_sum/(2*m)
        
        return cost
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    theta = np.ones(X.shape[1])
    cost(theta, X, y)
    
    • 1
    • 2
    303.9515255535976
    
    • 1
    #正则化代价函数
    def regularized_cost(theta,X,y,l=1):
        m=X.shape[0]
        
        regularized_term=(1/(2*m))*np.power(theta[1:],2).sum()
        return cost(theta,X,y)+regularized_term
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

    Regularized linear regression gradient

    def gradient(theta,X,y):
        #input:参数值theta,数据X,标签y
        #output:当前参数下梯度
        
        #样本个数
        m=X.shape[0]
        
        #计算代价函数
        grad=(X.T@(X@theta-y))/m
        
        return grad
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    gradient(theta, X, y)
    
    • 1
    array([-15.30301567, 598.16741084])
    
    • 1
    def regularized_gradient(theta, X, y, l=1):
        
        m=X.shape[0]
        
        regularized_term=theta.copy()
        regularized_term[0]=0#theta0不正则化
        
        regularized_term=(1/m)*regularized_term
        
        return gradient(theta, X, y) + regularized_term
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    regularized_gradient(theta, X, y)
    
    • 1
    array([-15.30301567, 598.25074417])
    
    • 1

    拟合数据

    def linear_regression_np(X, y, l=1):
    
        # STEP1:初始化参数
        theta = np.ones(X.shape[1])
        
        # STEP2:调用优化算法拟合参数
        # your code here  (appro ~ 1 lines)
        res = opt.minimize(fun=regularized_cost,
                           x0=theta,
                           args=(X, y, l),
                           method='TNC',
                           jac=regularized_gradient,
                           options={'disp': True})
        return res
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    theta = np.ones(X.shape[0])
    
    final_theta = linear_regression_np(X, y, l=0).get('x')
    
    • 1
    • 2
    • 3
    b=final_theta[0]
    k=final_theta[1]
    
    plt.scatter(X[:,1],y,label='training data',c='r')
    plt.plot(X[:,1],X[:,1]*k+b,label='prediction')
    plt.legend(loc=2)
    plt.show()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7

    在这里插入图片描述

    bias-variance

    training_cost, cv_cost = [], []
    
    • 1
    m = X.shape[0]
    for i in range(1, m+1):
        # 计算当前样本的代价
        res = linear_regression_np(X[:i, :], y[:i], l=0)
        
        tc = regularized_cost(res.x, X[:i, :], y[:i], l=0)
        cv = regularized_cost(res.x, Xval, yval, l=0)
        
        # 把计算结果存储至预先定义的数组training_cost, cv_cost中
        training_cost.append(tc)
        cv_cost.append(cv)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    plt.plot(np.arange(1,m+1),training_cost,label='training cost')
    plt.plot(np.arange(1,m+1),cv_cost,label='cv cost')
    plt.legend(loc=1)
    plt.show()
    
    • 1
    • 2
    • 3
    • 4

    在这里插入图片描述

    多项式回归

    #特征映射
    def poly_features(x, power, as_ndarray=False):  #特征映射
        data = {'f{}'.format(i): np.power(x, i) for i in range(1, power + 1)}
        df = pd.DataFrame(data)
    
        return df.values if as_ndarray else df
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    def normalize_feature(df):
        """Applies function along input axis(default 0) of DataFrame."""
        return df.apply(lambda column: (column - column.mean()) / column.std())
    
    • 1
    • 2
    • 3
    def prepare_poly_data(*args, power):
        """
        args: keep feeding in X, Xval, or Xtest
            will return in the same order
        """
        def prepare(x):
            # 特征映射
            df = poly_features(x, power=power)
    
            # 归一化处理
            ndarr = normalize_feature(df).values
    
            # 添加偏置项
            return np.insert(ndarr, 0, np.ones(ndarr.shape[0]), axis=1)
    
        return [prepare(x) for x in args]
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    X, y, Xval, yval, Xtest, ytest = map(np.ravel, [d['X'], d['y'], d['Xval'], d['yval'], d['Xtest'], d['ytest']])
    
    • 1
    poly_features(X, power=3)
    
    • 1
    f1f2f3
    0-15.936758253.980260-4047.621971
    1-29.152979849.896197-24777.006175
    236.1895491309.68343047396.852168
    337.4921871405.66411152701.422173
    4-48.0588292309.651088-110999.127750
    5-8.94145879.949670-714.866612
    615.307793234.3285233587.052500
    7-34.7062661204.524887-41804.560890
    81.3891541.9297502.680720
    9-44.3837601969.918139-87432.373590
    107.01350249.189211344.988637
    1122.762749518.14273811794.353058

    画出线性回归

    X_poly, Xval_poly, Xtest_poly= prepare_poly_data(X, Xval, Xtest, power=8)
    
    • 1
    def plot_learning_curve(X, y, Xval, yval, l=0):
    # INPUT:训练数据集X,y,交叉验证集Xval,yval,正则化参数l
    # OUTPUT:当前参数值下梯度
    # TODO:根据参数和输入的数据计算梯度 
        
        # STEP1:初始化参数,获取样本个数,开始遍历
        training_cost, cv_cost = [], []
        m = X.shape[0]
        for i in range(1, m + 1):
            # STEP2:调用之前写好的拟合数据函数进行数据拟合
            # your code here  (appro ~ 1 lines)
            res = linear_regression_np(X[:i, :], y[:i], l=l)
            # STEP3:计算样本代价
            # your code here  (appro ~ 1 lines)
            tc = cost(res.x, X[:i, :], y[:i])
            cv = cost(res.x, Xval, yval)
            # STEP3:把计算结果存储至预先定义的数组training_cost, cv_cost中
            # your code here  (appro ~ 2 lines)
            training_cost.append(tc)
            cv_cost.append(cv)
    
            
    
        plt.plot(np.arange(1, m + 1), training_cost, label='training cost')
        plt.plot(np.arange(1, m + 1), cv_cost, label='cv cost')
        plt.legend(loc=1)
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    plot_learning_curve(X_poly, y, Xval_poly, yval, l=0)
    plt.show()
    
    • 1
    • 2

    在这里插入图片描述

    
    
    • 1
  • 相关阅读:
    day4 学习python爬虫——接口与常见反爬
    Python爬虫 教程:IP池的使用
    SpringBoot整合Mybatis-Plus(含自动配置分析)
    【企业级SpringBoot单体项目模板 】—— 项目代码管理
    vs2017 编译Qt 5.11.2 源码
    Excel VLOOKUP实用教程之 05 vlookup如何从列表中获取最后一个值?(教程含数据excel)
    RHCA之路---EX280(6)
    MQTT第二话 -- emqx高可用集群实现
    后知后觉的尴尬
    建模干货:关于ZBrush拓扑的必学技能
  • 原文地址:https://blog.csdn.net/m0_45055763/article/details/126083860