采用NCF作为基本推荐模型
预测分数:
Y
^
u
i
=
Υ
(
p
u
,
q
i
)
\hat{Y}_{u i}=\bold\Upsilon\left(\bold{p}_{u}, \boldsymbol{q}_{i}\right)
Y^ui=Υ(pu,qi),NCF利用MLP来学习交互函数
Υ
\bold\Upsilon
Υ,
Υ
(
p
u
,
q
i
)
=
a
o
u
t
(
h
T
Φ
(
p
u
⊕
q
i
)
)
\bold\Upsilon\left(\bold{p}_{u}, \boldsymbol{q}_{i}\right)=\bold a_{out}(h^T\Phi(\boldsymbol{p}_{u}\oplus \boldsymbol{q}_{i}))
Υ(pu,qi)=aout(hTΦ(pu⊕qi)),
损失函数:
L
u
(
p
u
;
Θ
)
=
−
∑
(
i
,
Y
u
i
)
∈
D
u
Y
u
i
log
Y
^
u
i
+
(
1
−
Y
u
i
)
log
(
1
−
Y
^
u
i
)
\mathcal{L}_{u}\left(p_{u} ; \Theta\right)=-\sum_{\left(i, Y_{u i}\right) \in \mathcal{D}_{u}} Y_{u i} \log \hat{Y}_{u i}+\left(1-Y_{u i}\right) \log \left(1-\hat{Y}_{u i}\right)
Lu(pu;Θ)=−(i,Yui)∈Du∑YuilogY^ui+(1−Yui)log(1−Y^ui)
随机近似攻击

硬用户挖掘

