实战项目的三个任务:
1.使用随机森林算法完成基本建模:包括数据预处理,特征展示,完成建模并进行可视化展示分析。
2.分析数据样本量与特征个数对结果的影响,在保证算法一致的前提下,增加样本个数,观察结果变化,重新进行特征工程,引入新的特征后,观察结果走势。
3.对随机森林算法进行调参,找到最合适的参数,掌握机器学习中两种调参方法,找到模型最优参数。
任务1:
- import pandas as pd
- data =pd.read_csv()
- data.head()
- import datetime
- year = data['year']
- month =data['month']
- day =data['day']
- dates = [(str(year)+'-'+str(month)+'-'+str(day)) for year,month,day in zip(year,month,day)]
- dates=[datetime.datetime.strptime(date,'%Y-%m-%d') for date in dates]
- dates[:5]
对时间序列进行重新调整,进行特征绘制。
- ##进行绘图
- import matplotlib.pyplot as plt
- %matplotlib inline
- plt.style.use('fivethirtyeight')##风格设置
- # 设置布局
- fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, figsize = (10,10))
- fig.autofmt_xdate(rotation = 45)
-
- # 标签值
- ax1.plot(dates, data['actual'])
- ax1.set_xlabel(''); ax1.set_ylabel('Temperature'); ax1.set_title('Max Temp')
-
- # 昨天
- ax2.plot(dates, data['temp_1'])
- ax2.set_xlabel(''); ax2.set_ylabel('Temperature'); ax2.set_title('Previous Max Temp')
-
- # 前天
- ax3.plot(dates, data['temp_2'])
- ax3.set_xlabel('Date'); ax3.set_ylabel('Temperature'); ax3.set_title('Two Days Prior Max Temp')
-
- # 我的逗逼朋友
- ax4.plot(dates, data['friend'])
- ax4.set_xlabel('Date'); ax4.set_ylabel('Temperature'); ax4.set_title('Friend Estimate')
-
- plt.tight_layout(pad=2)

从中可以看出4个特征的基本影响走势。
- import numpy as np
- y = np.array(data['actual'])
- x = data.drop(['actual'],axis=1)
- x_list =list(x.columns)
- x = np.array(x)
- ##数据分类
- from sklearn.model_selection import train_test_split
- x_train,x_test,y_train,y_test =train_test_split(x,y,test_size=0.25,random_state=42)
- ##建立随机森林模型
- from sklearn.ensemble import RandomForestRegressor
- rfr = RandomForestRegressor(n_estimators=1000,random_state=42)
- rfr.fit(x_train,y_train)
- y_pred = rfr.predict(x_test)
- from sklearn.metrics import mean_squared_error
- mse=mean_squared_error(y_test,y_pred)
- print('mse',mse)
这里进行了测试集与训练集的分割与随机森林模型的建立。通过建立的模型预测了结果与真实值计算量mse的值。
随后进行了决策树树的可视化
- from sklearn.tree import export_graphviz
- import pydot
- tree = rfr.estimators_[5]
- export_graphviz(tree,out_file='tree.dot',
- feature_names=x_list,
- rounded=True,precision=1)
- (graph,) = pydot.graph_from_dot_file('tree.dot')
- graph.write_png('tree.png')
由于树枝过于复杂繁多,所以进行预剪枝。
- ##进行预剪枝
- rfr_small = RandomForestRegressor(n_estimators=10,max_depth=3,random_state=42)
- rfr_small.fit(x_train,y_train)
- tree_small = rfr_small.estimators_[5]
- export_graphviz(tree_small,out_file='small_tree.dot',
- feature_names=x_list,
- rounded=True,precision=1)
- (graph,) = pydot.graph_from_dot_file('small_tree.dot')
- graph.write_png('small_tree.png')
2.选择出重点的特征,然后对全特征与重点特征的结果进行比较
这里使用了randomforestregressor.feature_importance_可以输出重要值。
- ##通过randomforestregressor的feature_importance_显示特征重要性
- importance = list(rfr.feature_importances_)
- feature_importances =[(feature_name,importance) for feature_name,importance in zip(x_list,importance)]
- feature_importances =sorted(feature_importances,key =lambda x:x[1],reverse =True)##key 为以那一列数据为排列对象
- feature_importances
- ##以这两个特征为唯二的特征进行计算
- rfr = RandomForestRegressor(n_estimators=100,random_state=42)
- new_x = np.array(data.iloc[:,4:5])
- new_x_train,new_x_test,new_y_train,new_y_test =train_test_split(new_x,y,test_size=.25,random_state=42)
- rfr.fit(new_x_train,new_y_train)
- y_pred = rfr.predict(new_x_test)
- print('mse',mean_squared_error(new_y_test,y_pred))
相比之下,mse值上升,说明效果不好,其他特征有也重要效果。
任务二:数据与特征对结果的影响分析。
这里读取了数据的拓展包进行测试。操作与上面的一样
- import pandas as pd
- data =pd.read_csv()
- data.head()
- ##绘图观察数据
- # 转换成标准格式
- import datetime
-
- # 得到各种日期数据
- years = data['year']
- months = data['month']
- days = data['day']
-
- # 格式转换
- dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
- dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in dates]
-
- # 绘图
- import matplotlib.pyplot as plt
-
- %matplotlib inline
-
- # 风格设置
- plt.style.use('fivethirtyeight')
- # Set up the plotting layout
- fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, figsize = (15,10))
- fig.autofmt_xdate(rotation = 45)
-
- # Actual max temperature measurement
- ax1.plot(dates, data['actual'])
- ax1.set_xlabel(''); ax1.set_ylabel('Temperature (F)'); ax1.set_title('Max Temp')
-
- # Temperature from 1 day ago
- ax2.plot(dates, data['temp_1'])
- ax2.set_xlabel(''); ax2.set_ylabel('Temperature (F)'); ax2.set_title('Prior Max Temp')
-
- # Temperature from 2 days ago
- ax3.plot(dates, data['temp_2'])
- ax3.set_xlabel('Date'); ax3.set_ylabel('Temperature (F)'); ax3.set_title('Two Days Prior Max Temp')
-
- # Friend Estimate
- ax4.plot(dates, data['friend'])
- ax4.set_xlabel('Date'); ax4.set_ylabel('Temperature (F)'); ax4.set_title('Friend Estimate')
-
- plt.tight_layout(pad=2)

由于多了特征,对多出来的特征进行组合与处理。
- seasons=[]
- for month in data['month']:
- if month in[1,2,12]:
- seasons.append('winter')
- elif month in [3,4,5]:
- seasons.append('spring')
- elif month in [6,7,8]:
- seasons.append('summer')
- else:
- seasons.append('auntumn')
- reduced_x = data[['temp_1','prcp_1','average','actual']]
- reduced_x['seasons']=seasons
- # 导入seaborn工具包
- import seaborn as sns
- sns.set(style="ticks", color_codes=True);
-
- # 选择你喜欢的颜色模板
- palette = sns.xkcd_palette(['dark blue', 'dark green', 'gold', 'orange'])
-
- # 绘制pairplot
- sns.pairplot(reduced_x, hue = 'seasons', diag_kind = 'kde', palette= palette, plot_kws=dict(alpha = 0.7),
- diag_kws=dict(shade=True));

画出了四个月气温变化的相关图。
先改变数据量,测试数据量对模型效果的影响。
- data = pd.get_dummies(data)
- new_y = np.array(data['actual'])
- new_x = data.drop(['actual'],axis=1)
- new_x_list =list(new_x.columns)
- new_x = np.array(new_x)
- from sklearn.model_selection import train_test_split
- new_x_train,new_x_test,new_y_train,new_y_test =train_test_split(new_x,new_y,test_size=0.25,random_state=42)
- old_y = np.array(data['actual'])
- old_x = data.drop(['actual'],axis=1)
- old_x_list =list(old_x.columns)
- old_x = np.array(old_x)
- from sklearn.model_selection import train_test_split
- old_x_train,old_x_test,old_y_train,old_y_test =train_test_split(x,y,test_size=0.25,random_state=42)
- def model_train_predict(x_train,y_train,x_test,y_test):
- rfr = RandomForestRegressor(n_estimators=100,random_state=42)
- rfr.fit(x_train,y_train)
- y_pred = rfr.predict(x_test)
- errors= abs(y_pred-y_test)
- print('平均误差',round(np.mean(errors),2))
- accuracy = 100-np.mean(errors)
- print('平均正确率',accuracy)
- model_train_predict(old_x_train,old_y_train,old_x_test,old_y_test)
- model_train_predict(ori_new_x_train,new_y_train,ori_new_x_test,new_y_test)
从结果可以发现,当数据量增加,误差减少。
然后改变特征数量,判断其对效果的影响。
- rfr = RandomForestRegressor(n_estimators=100,random_state=42)
- rfr.fit(new_x_train,new_y_train)
- y_pred = rfr.predict(new_x_test)
- errors= abs(y_pred-new_y_test)
- print('平均误差',round(np.mean(errors),2))
- accuracy = 100-np.mean(errors)
- print('平均正确率',accuracy)
- importances = list(rfr.feature_importances_)
- feature_importances =[(feature,importance) for feature,importance in zip(new_x_list,importances)]
- feature_importances = sorted(feature_importances,key =lambda x:x[1],reverse =True)
- # 对特征进行排序
- x_values =list(range(len(importances)))
- sorted_importances = [importance[1] for importance in feature_importances]
- sorted_features = [importance[0] for importance in feature_importances]
-
- # 累计重要性
- cumulative_importances = np.cumsum(sorted_importances)
-
- # 绘制折线图
- plt.plot(x_values, cumulative_importances, 'g-')
-
- # 画一条红色虚线,0.95那
- plt.hlines(y = 0.95, xmin=0, xmax=len(sorted_importances), color = 'r', linestyles = 'dashed')
-
- # X轴
- plt.xticks(x_values, sorted_features, rotation = 'vertical')
-
- # Y轴和名字
- plt.xlabel('Variable'); plt.ylabel('Cumulative Importance'); plt.title('Cumulative Importances');

根据主成分分析,总重要性大于95%基本可以概括为这5个特征可以涵盖所有重要性。
- important_feature_names =[feature[0] for feature in feature_importances[0:5]]
- important_feature_indices =[new_x_list.index(feature) for feature in important_feature_names]
- important_x_train = new_x_train[:,important_feature_indices]
- important_x_test = new_x_test[:,important_feature_indices]
- model_train_predict(important_x_train,new_y_train,important_x_test,new_y_test)
- ##运行时间的提升
- import time
- all_features_time=[]
- for _ in range(10):
- start_time = time.time()
- rfr.fit(new_x_train,new_y_train)
- y_pred = rfr.predict(new_x_test)
- end_time =time.time()
- all_features_time.append((end_time-start_time))
- all_features_times=np.mean(all_features_time)
- all_features_time=[]
- for _ in range(10):
- start_time = time.time()
- rfr.fit(important_x_train,new_y_train)
- y_pred = rfr.predict(important_x_test)
- end_time =time.time()
- all_features_time.append((end_time-start_time))
- reduced_features_times=np.mean(all_features_time)
- all_accuracy =100*(1-np.mean(abs(all_y_pred-new_y_test)/new_y_test))
- reduced_accuracy =100*(1-np.mean(abs(reduced_y_pred-new_y_test)/new_y_test))
- comparison = pd.DataFrame({'features': ['all (17)', 'reduced (5)'],
- 'run_time': [all_features_times, reduced_features_times],
- 'accuracy': [all_accuracy, reduced_accuracy]})
-
- comparison[['features', 'accuracy', 'run_time']]
这里通过比较对运行时间的优化与正确率的提升进行比较,发现当数据量多与特征多的时候,对模型建立的效果越好。
任务三:调参:这里使用RandomizeSearchCV与GridSearchCV两种调参方式进行参数的选择。
- from sklearn.model_selection import RandomizedSearchCV
- n_estimators =[int(x) for x in np.linspace(start=200,stop=2000,num=10)]
- max_features=['auto','sqrt']
- max_depth = [int(x) for x in np.linspace(10,20,num=2)]
- max_depth.append(None)
- min_samples_split=[2,5,10]
- min_samples_leaf=[1,2,4]
- bootstrap = [True,False]
- random_grid = {'n_estimators': n_estimators,
- 'max_features': max_features,
- 'max_depth': max_depth,
- 'min_samples_split': min_samples_split,
- 'min_samples_leaf': min_samples_leaf,
- 'bootstrap': bootstrap}
- rf = RandomForestRegressor()
-
- rf_random = RandomizedSearchCV(estimator=rf, param_distributions=random_grid,
- n_iter = 100, scoring='neg_mean_absolute_error',
- cv = 3, verbose=2, random_state=42, n_jobs=-1)
-
- # 执行寻找操作
- rf_random.fit(new_x_train, new_y_train)
- from sklearn.model_selection import GridSearchCV
-
- # 网络搜索
- param_grid = {
- 'bootstrap': [True],
- 'max_depth': [8,10,12],
- 'max_features': ['auto'],
- 'min_samples_leaf': [2,3, 4, 5,6],
- 'min_samples_split': [3, 5, 7],
- 'n_estimators': [800, 900, 1000, 1200]
- }
-
- # 选择基本算法模型
- rf = RandomForestRegressor()
-
- # 网络搜索
- grid_search = GridSearchCV(estimator = rf, param_grid = param_grid,
- scoring = 'neg_mean_absolute_error', cv = 3,
- n_jobs = -1, verbose = 2)
- grid_search.fit(train_features, train_labels)
最后发现可以通过随机搜索确定大方向,使用网格化搜索进行精细化搜索