• C++ 内存模型 write_x_read_y 试例构造


    之前一段时间偶然在 B 站上刷到了南京大学蒋炎岩(jyy)老师在直播操作系统网课。点进直播间看了一下发现这个老师实力非凡,上课从不照本宣科,而且旁征博引又不吝于亲自动手演示,于是点了关注。后来开始看其网课录播,其中一节的标题吸引了我,多处理器编程:从入门到放弃 (线程库;现代处理器和宽松内存模型)。“多处理器编程”这个词让我联想到去年看的《The Art of Multiprocessor Programming》,于是仔细看了一下这节网课。里面介绍到了一个试例 write_x_read_y,它是用 C 语言和内联汇编写的,它用来说明运行期指令重排。这个试例能够成功观测到运行期指令重排现象。这让我不得不佩服 jyy 的实践精神。之前看了一些介绍 C++ 内存模型的文章,没有一个能用可复现的完整代码说明问题的,全部都是说这段代码可能出现 xx 结果,没有实际的执行结果。在 C++ 内存模型中,这个测试用例除了能够说明运行期指令重排,也能用于说明 happens-before consistency 和 sequential consistency 的差别。于是尝试用 C++ Atomic 来实现这段代码,看看能不能观测到预期结果。

    首先线程库 pthread 替换为 std::thread,内联汇编替换为 std::atomic,且 load 和 store 操作全部使用最弱的 std::memory_order_relaxed 内存序。完整的代码如下:

    // write_x_read_y.cpp
    
    #include 
    #include 
    #include 
    
    static std::atomic_int flag{0};
    
    inline void wait_flag(int id)
    {
        while (!(flag & (0x1 << id))) {}
    }
    
    inline void clear_flag(int id)
    {
        flag.fetch_and(~(0x1 << id));
    }
    
    std::atomic_int x{0}, y{0};
    
    void write_x_read_y()
    {
        while (true) {
            wait_flag(0);
    
            x.store(1, std::memory_order_relaxed);    // t1.1
            int v = y.load(std::memory_order_relaxed); // t1.2
            printf("%d ", v);
    
            clear_flag(0);
        }
    }
    
    void write_y_read_x()
    {
        while (true) {
            wait_flag(1);
    
            y.store(1, std::memory_order_relaxed);    // t2.1
            int v = x.load(std::memory_order_relaxed); // t2.2
            printf("%d ", v);
    
            clear_flag(1);
        }
    }
    
    int main()
    {
        std::thread t1(write_x_read_y), t2(write_y_read_x);
    
        while (true) {
            x = 0, y = 0;
            flag = 0b11;
    
            while (flag) {}
    
            printf("\n");
            fflush(stdout);
        }
    
        t1.join();
        t2.join();
    }
    
    折叠

    注意这段代码要开启代码优化才能观测到运行期指令重排,这里选择 O2

    g++ -o write_x_read_y.out -O2 -pthread -std=c++11 -Wall -Wextra write_x_read_y.cpp
    

    然后使用 jyy 视频里使用的 Unix 命令进行测试并整理结果

    ./write_x_read_y.out | head -n1000000 | sort | uniq -c
    

    以下结果是在虚拟机环境中执行得到的。宿主机 CPU 型号为 AMD Ryzen 7 5800X,OS 为 Windows 10 x64,虚拟机是 Rocky Linux 8.6。

     948739 0 0 
      50150 0 1 
       1109 1 0 
          2 1 1
    

    成功观测到“0 0”。假设程序按照简单交叉执行,执行结果只可能是“0 1”、“1 0”、“1 1”这三种,不可能出现“0 0”。也就是说发生了运行期指令重排。

    接下来,将 std::memory_order_relaxed 替换为 std::memory_order_releasestd::memory_order_acquire,再测一遍

    x.store(1, std::memory_order_release);    // t1.1
    int v = y.load(std::memory_order_acquire); // t1.2
    printf("%d ", v);
    
    y.store(1, std::memory_order_release);    // t2.1
    int v = x.load(std::memory_order_acquire); // t2.2
    printf("%d ", v);
    

    测试结果为:

     613684 0 0 
     360557 0 1 
      25757 1 0 
          2 1 1
    

    又出现了“0 0”,也就说明这个试例无法区分 relaxed memory model 和 happens-before consistency。这也与理论相符,虽然 t1.1 happens-before t2.2、t2.1 happens-before t1.2,但是却无法借此推导出约束关系来限制执行结果。“0 0”依然有可能出现。

    接下来替换为 std::memory_order_seq_cst

    x.store(1, std::memory_order_seq_cst);    // t1.1
    int v = y.load(std::memory_order_seq_cst); // t1.2
    printf("%d ", v);
    
    y.store(1, std::memory_order_seq_cst);    // t2.1
    int v = x.load(std::memory_order_seq_cst); // t2.2
    printf("%d ", v);
    

    测试结果为:

     132394 0 1 
        151 1 0 
     867455 1 1
    

    这次“0 0”并没有出现,运行期指令重排没有被观测到。这与理论相符,使用 std::memory_order_seq_cst 的所有原子操作可以视为简单交叉执行,也就是 sequential consistency。“0 0”不可能出现。

    write_x_read_y 这个试例很好地说明了 C++ 内存模型中的 happens-before consistency 和 sequential consistency 的区别。它的代码片段常见于各种相关文章中,却没有完整的代码和实际的测试结果。这下也算补全了 C++ 内存模型知识的一块拼图。

  • 相关阅读:
    C语言每日一题(10) 回形矩阵
    C++ Qt开发:Charts折线图绑定事件
    276_Python_桌面的一个TXT文档里的内容,插入到Word文档的指定位置
    软件测试架构师的知识能力模型
    [生物信息]临床研究统计分析成长营14天班
    数据安全:证书和密钥对概念详解
    MATLAB 的ICEEMDAN分解代码实现
    RHCSA认证考试---8.配置 autofs
    前端入门到入土?
    RedisTemplate的线程安全问题&水了一堆pr
  • 原文地址:https://www.cnblogs.com/mkckr0/p/16533221.html