• 算法的时间复杂度和空间复杂度


    1.算法效率

    1.1 如何衡量一个算法的好坏

    如何衡量一个算法的好坏呢?比如对于以下斐波那契数列:

    long long Fib(int N)
    {
     if(N < 3)
     return 1;
     
     return Fib(N-1) + Fib(N-2);
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7

    在这里插入图片描述

    斐波那契数列的递归实现方式非常简洁,但简洁不一定好,我们需要用复杂度来判断算法的好坏

    1.2 算法的复杂度

    算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度
    时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。

    在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

    因为硬件在不断发展,所以我们一般对时间复杂度的关注要比较高,不用特别关注空间复杂度

    2.时间复杂度

    2.1 时间复杂度的概念

    时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数(其实就是关于N的表达式,也可能还有其他未知数),它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。
    即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度

    // 请计算一下Func1中++count语句总共执行了多少次?
    void Func1(int N)
    {
    int count = 0;
    for (int i = 0; i < N ; ++ i)
    {
     for (int j = 0; j < N ; ++ j)
     {
     ++count;
     }
    }
     
    for (int k = 0; k < 2 * N ; ++ k)
    {
     ++count;
    }
    int M = 10;
    while (M--)
    {
     ++count;
    }
    printf("%d\n", count);
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23

    Func1 执行的基本操作次数 :
    在这里插入图片描述

    N = 10
    F(N) = 130

    N = 100
    F(N) = 10210

    N = 1000
    F(N) = 1002010

    实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法
    但N趋近于无穷时,对结果影响最大的是N2,2*N+10对结果的影响不大,所以舍去,即O(N2)是其时间复杂度

    2.2 大O的渐进表示法

    大O符号(Big O notation):是用于描述函数渐进行为的数学符号。
    推导大O阶方法:
    1、用常数1取代运行时间中的所有加法常数。
    2、在修改后的运行次数函数中,只保留最高阶项。
    3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。
    使用大O的渐进表示法以后,Func1的时间复杂度为:O(N2)

    通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。

    另外有些算法的时间复杂度存在最好、平均和最坏情况:
    最坏情况:任意输入规模的最大运行次数(上界)
    平均情况:任意输入规模的期望运行次数
    最好情况:任意输入规模的最小运行次数(下界)

    例如:在一个长度为N数组中搜索一个数据x
    最好情况:1次找到
    最坏情况:N次找到
    平均情况:N/2次找到

    在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

    2.3 常见时间复杂度计算举例

    // 计算Func1的时间复杂度?
    void Func2(int N)
    {
     int count = 0;
     for (int k = 0; k < 2 * N ; ++ k)
     {
     ++count;
     }
     int M = 10;
     while (M--)
     {
     ++count;
     }
     printf("%d\n", count);
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15

    实例1基本操作执行了2N+10次,通过推导大O阶方法知道,时间复杂度为 O(N)

    // 计算Func2的时间复杂度?
    void Func3(int N, int M)
    {
     int count = 0;
     for (int k = 0; k < M; ++ k)
     {
     ++count;
     }
     for (int k = 0; k < N ; ++ k)
     {
     ++count;
     }
     printf("%d\n", count);
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14

    实例2基本操作执行了M+N次,有两个未知数M和N,时间复杂度为 O(N+M)

    // 计算Func3的时间复杂度?
    void Func4(int N)
    {
     int count = 0;
     for (int k = 0; k < 100; ++ k)
     {
     ++count;
     }
     printf("%d\n", count);
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10

    实例3基本操作执行了10次,通过推导大O阶方法,时间复杂度为 O(1)

    // 计算strchr的时间复杂度?
    const char * strchr ( const char * str, int character );
    
    • 1
    • 2

    实例4基本操作执行最好1次,最坏N次,时间复杂度一般看最坏,时间复杂度为 O(N)

    // 计算BubbleSort的时间复杂度?
    void BubbleSort(int* a, int n)
    {
     assert(a);
     for (size_t end = n; end > 0; --end)
     {
     int exchange = 0;
     for (size_t i = 1; i < end; ++i)
     {
     if (a[i-1] > a[i])
     {
     Swap(&a[i-1], &a[i]);
     exchange = 1;
     }
     }
     if (exchange == 0)
     break;
     }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19

    实例5基本操作执行最好N次,最坏执行了(N*(N+1))/2次,通过推导大O阶方法+时间复杂度一般看最坏,时间复杂度为 O(N2)

    // 计算BinarySearch的时间复杂度?
    int BinarySearch(int* a, int n, int x)
    {
     assert(a);
     int begin = 0;
     int end = n-1;
     // [begin, end]:begin和end是左闭右闭区间,因此有=号
     while (begin <= end)
     {
     int mid = begin + ((end-begin)>>1);
     if (a[mid] < x)
     begin = mid+1;
     else if (a[mid] > x)
     end = mid-1;
     else
     return mid;
     }
     return -1;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19

    实例6基本操作执行最好1次,最坏O(logN)次,时间复杂度为 O(logN)
    ps:logN在算法分析中表示是底数为2,对数为N。有些地方会写成lgN。

    // 计算阶乘递归Fac的时间复杂度?
    long long Fac(size_t N)
    {
     if(0 == N)
     return 1;
     
     return Fac(N-1)*N;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

    实例7通过计算分析发现基本操作递归了N次,时间复杂度为O(N)。

    // 计算斐波那契递归Fib的时间复杂度?
    long long Fib(size_t N)
    {
     if(N < 3)
     return 1;
     
     return Fib(N-1) + Fib(N-2);
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

    实例8通过计算分析发现基本操作递归了2N次,时间复杂度为O(2N)。

    在这里插入图片描述
    时间复杂度相当于上图的每行的总和1+2+4+8+16,为O(2N)
    空间复杂度是上图的行数5,也就是深度,为O(N)
    在这里插入图片描述
    斐波那契递归其实像是一个三角形减去右下角的小三角,少的那部分对结果没有太大影响,所以估算为2N

    3.空间复杂度

    3.1 空间复杂度的概念

    空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度 。

    空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法

    注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定

    3.2 常见空间复杂度的计算实例

    // 计算BubbleSort的空间复杂度?
    void BubbleSort(int* a, int n)
    {
     assert(a);
     for (size_t end = n; end > 0; --end)
     {
     int exchange = 0;
     for (size_t i = 1; i < end; ++i)
     {
     if (a[i-1] > a[i])
     {
     Swap(&a[i-1], &a[i]);
     exchange = 1;
     }
     }
     if (exchange == 0)
     break;
     }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19

    实例1使用了常数个额外空间,所以空间复杂度为 O(1)

    // 计算Fibonacci的空间复杂度?
    // 返回斐波那契数列的前n项
    long long* Fibonacci(size_t n)
    {
     if(n==0)
     return NULL;
     
     long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
     fibArray[0] = 0;
     fibArray[1] = 1;
     for (int i = 2; i <= n ; ++i)
     {
     fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
     }
     return fibArray;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16

    实例2动态开辟了N个空间,空间复杂度为 O(N)

    // 计算阶乘递归Fac的空间复杂度?
    long long Fac(size_t N)
    {
     if(N == 0)
     return 1;
     
     return Fac(N-1)*N;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

    实例3递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)

    4.常见复杂度对比

    一般算法常见的复杂度如下:
    在这里插入图片描述

    在这里插入图片描述

  • 相关阅读:
    await 关键字在 async 函数中确实表现出“等待”的效果,那异步的含义呢,异步指整个不影响主进程
    求遥感影像利用arcgis或envi进行景观布局优化分析思路操作,进行什么操作或可使用什么工具
    Torch基础(二)
    人工智能 笔记1
    【K8S】通过 CoreDNS + ETCD + ExternalDNS 打通内网环境 Ingress 的域名访问
    slf4j如何进行logback配置呢?
    WSL2Linux 子系统(六)
    css关于relative和absolute的区别
    多线程事务(仅保证原子性)
    Vue中九九乘法表
  • 原文地址:https://blog.csdn.net/iqrmshrt/article/details/125979265