我们都知道Future这个接口是为了去除主线程的等待时间,以方便用等待时间处理其他复杂的业务逻辑
这个接口总共只有5个方法,通过方法名就可以见名知意
public interface Future<V> {
boolean cancel(boolean mayInterruptIfRunning);
boolean isCancelled();
boolean isDone();
V get() throws InterruptedException, ExecutionException;
V get(long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException;
}
FutureTast实现了Future接口以及Callable接口
这是它的几个状态,state就代表线程目前运行的状态,它下面的属性都有对应解释
private volatile int state;
private static final int NEW = 0;//创建新线程
private static final int COMPLETING = 1;//线程执行中
private static final int NORMAL = 2;//线程执行结束
private static final int EXCEPTIONAL = 3;//线程执行异常exception
private static final int CANCELLED = 4;//线程取消
private static final int INTERRUPTING = 5;//线程中断中
private static final int INTERRUPTED = 6;//线程中断成功
FutureTask可以传入一个runnable接口,因为它使用了适配器模式
以下,通过构造方法传入runnable以及返回值
public FutureTask(Runnable runnable, V result) {
this.callable = Executors.callable(runnable, result);
this.state = NEW; // ensure visibility of callable
}
Executors的callable方法
public static <T> Callable<T> callable(Runnable task, T result) {
if (task == null)
throw new NullPointerException();
return new RunnableAdapter<T>(task, result);
}
最终构造了适配器类,这个类继承了Callable,因此可以被看做是一个Callable,构造方法传入runnable以及结果,call则是执行方法
static final class RunnableAdapter<T> implements Callable<T> {
final Runnable task;
final T result;
RunnableAdapter(Runnable task, T result) {
this.task = task;
this.result = result;
}
public T call() {
task.run();
return result;
}
}
public void run() {
// compareAndSwapObject原子操作比较并交换两个值
if (state != NEW ||
!UNSAFE.compareAndSwapObject(this, runnerOffset,
null, Thread.currentThread()))
return;
// 满足条件后
try {
Callable<V> c = callable;
// 判断c是否空指针以及再次判断state是不是新建
if (c != null && state == NEW) {
V result;
// 标识是否执行成功
boolean ran;
try {
// 尝试去执行自定义的call并且把ran标识为true
result = c.call();
ran = true;
} catch (Throwable ex) {
// 失败了,将返回值设为null
result = null;
ran = false;
setException(ex);
}
// 如果执行成功,调用set方法
if (ran)
set(result);
}
} finally {
// runner must be non-null until state is settled to
// prevent concurrent calls to run()
runner = null;
// state must be re-read after nulling runner to prevent
// leaked interrupts
int s = state;
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
}
}
成功则调用set方法
protected void set(V v) {
// CAS切换到中间状态COMPLETING
if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
// 设置返回值
outcome = v;
// 设置为正常结束
// 到达终态后不能再继续转换,因此可以使用lazySet
UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state
// 唤醒执行期间因#get()阻塞的线程
finishCompletion();
}
}
get方法用于获取结果,如果state的值不满足条件,会进入等待方法
这里int s = state;语句用于获取当前值,state是可以被改变的
public V get() throws InterruptedException, ExecutionException {
int s = state;
if (s <= COMPLETING)
s = awaitDone(false, 0L);
return report(s);
}
如果s小于1会让这个线程等待结果
private int awaitDone(boolean timed, long nanos)
throws InterruptedException {
// 计算等待的截止时间
final long deadline = timed ? System.nanoTime() + nanos : 0L;
WaitNode q = null;
boolean queued = false;
for (;;) {
// 如果该线程被打断的话,进行节点清理并且抛出异常
if (Thread.interrupted()) {
removeWaiter(q);
throw new InterruptedException();
}
//获取状态并且进行后续操作
int s = state;
if (s > COMPLETING) {
if (q != null)
q.thread = null;
return s;
}
else if (s == COMPLETING) // cannot time out yet
Thread.yield();
else if (q == null)
q = new WaitNode();
else if (!queued)
queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
q.next = waiters, q);
// 剩余时间
else if (timed) {
// 计算需要等待的时间
nanos = deadline - System.nanoTime();
if (nanos <= 0L) {
removeWaiter(q);
return state;
}
LockSupport.parkNanos(this, nanos);
}
else
LockSupport.park(this);
}
}