• 基于tensorflow2.0+使用bert获取中文词、句向量并进行相似度分析


    本文基于transformers库,调用bert模型,对中文、英文的稠密向量进行探究

    开始之前还是要说下废话,主要是想吐槽下,为啥写这个东西呢?因为我找了很多文章要么不是不清晰,要么就是基于pytorch,所以特地写了这篇基于tensorflow2.0+的

    运行环境

    这个环境没有严格要求,仅供参考
    win10 + python 3.8 + tensorflow 2.9.1 + transformers 4.20.1

    导入库

    from transformers import AutoTokenizer, TFAutoModel
    import tensorflow as tf
    import matplotlib.pyplot as plt
    
    • 1
    • 2
    • 3

    加载模型

    model_name = "bert-base-uncased"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = TFAutoModel.from_pretrained(model_name,
                                        output_hidden_states=True)  # 是否返回bert所有隐藏层的稠密向量
    
    • 1
    • 2
    • 3
    • 4

    输入测试句子

    utt = ['今天的月亮又大又圆', '月亮真的好漂亮啊', '今天去看电影吧', "爱情睡醒了,天琪抱着小贝进酒店", "侠客行风万里"]
    inputs = tokenizer(utt, return_tensors="tf", padding="max_length", truncation=True, max_length=64)
    outputs = model(inputs)
    hidden_states = outputs[2]  # 获得各个隐藏层输出
    
    • 1
    • 2
    • 3
    • 4

    解释下输出(hidden_states):

    1. The layer number (13 layers)
    2. The batch number (5 sentence) 也就是输入句子的个数
    3. The word / token number (64 tokens in our sentence) 也就是max_length
    4. The hidden unit / feature number (768 features)

    疑惑点:
    1.为啥是13层?bert不是12层吗?
    第一层是输入的嵌入层,其余12层才是bert的

    打印出出看下shape:

    print("Number of layers:", len(hidden_states), "  (initial embeddings + 12 BERT layers)")
    # Number of layers: 13   (initial embeddings + 12 BERT layers)
    
    layer_i = 0
    print("Number of batches:", len(hidden_states[layer_i]))
    # umber of batches: 5
    
    batch_i = 0
    print("Number of tokens:", len(hidden_states[layer_i][batch_i]))
    # Number of tokens: 64
    
    token_i = 0
    print("Number of hidden units:", len(hidden_states[layer_i][batch_i][token_i]))
    # Number of hidden units: 768
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14

    查看下第一个句子第五个词在第五层的表示

    batch_i = 0
    token_i = 5
    layer_i = 5
    vec = hidden_states[layer_i][batch_i][token_i]
    
    • 1
    • 2
    • 3
    • 4

    嗯,看下分布吧

    plt.figure(figsize=(10, 10))
    plt.hist(vec, bins=200)
    plt.show()
    
    • 1
    • 2
    • 3

    请添加图片描述

    现在多个句子的张量做一些改动

    因为hidden_states是元组,所以现在要把他的维度嵌入到张量中

    sentence_embeddings = tf.stack(hidden_states, axis=0)  # 在维度0的位置插入,也就是把13放入最前面
    print(f"sentence_embeddings.shape : {sentence_embeddings.shape}")
    # sentence_embeddings.shape : (13, 5, 64, 768)
    
    • 1
    • 2
    • 3

    调换维度,使每个词都有13层的嵌入表示

    sentence_embeddings_perm = tf.transpose(sentence_embeddings, perm=[1, 2, 0, 3])
    print(f"sentence_embeddings_perm.shape : {sentence_embeddings_perm.shape}")
    # sentence_embeddings_perm.shape : (5, 64, 13, 768)
    
    • 1
    • 2
    • 3

    获取词的稠密向量

    第一种方式:拼接后四层的稠密向量

    for sentence_embedding in sentence_embeddings_perm:  # 获取每个句子的embedding
        print(f"sentence_embedding.shape: {sentence_embedding.shape}")
        token_vecs_cat = []
        for token_embedding in sentence_embedding:  # 获取句子每个词的embedding
            print(f"token_embedding.shape : {token_embedding.shape}")
            cat_vec = tf.concat([token_embedding[-1], token_embedding[-2], token_embedding[-3], token_embedding[-4]], axis=0)
            print(f"cat_vec.shape : {cat_vec.shape}")
            token_vecs_cat.append(cat_vec)
        print(f"len(token_vecs_cat) : {len(token_vecs_cat)}")
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    第二种方式:加和后四层的稠密向量

    for sentence_embedding in sentence_embeddings_perm:  # 获取每个句子的embedding
        print(f"sentence_embedding.shape: {sentence_embedding.shape}")
        token_vecs_cat = []
        for token_embedding in sentence_embedding:  # 获取句子每个词的embedding
            print(f"token_embedding.shape : {token_embedding.shape}")
            cat_vec = sum(token_embedding[-4:])
            print(f"cat_vec.shape : {cat_vec.shape}")
            token_vecs_cat.append(cat_vec)
        print(f"len(token_vecs_cat) : {len(token_vecs_cat)}")
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    获取句子的稠密向量

    平均每个token倒数第二层的稠密向量

    token_vecs = sentence_embeddings[-2]
    print(f"token_vecs.shape : {token_vecs.shape}")
    # token_vecs.shape : (5, 64, 768)
    sentences_embedding = tf.reduce_mean(token_vecs, axis=1)
    print(f"sentences_embedding.shape : {sentences_embedding.shape}")
    # sentences_embedding.shape : (5, 768)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

    相似度探讨

    不同句子间的相似度

    tensor_test = sentences_embedding[0]
    consine_sim_tensor = tf.keras.losses.cosine_similarity(tensor_test, sentences_embedding)
    print(f"consine_sim_tensor : {consine_sim_tensor}")
    # consine_sim_tensor : [-0.99999994 -0.9915971  -0.9763253  -0.7641263  -0.9695324 ]
    
    • 1
    • 2
    • 3
    • 4

    探讨下相同词bank在不同上下文时其vector的相似度

    utt = ["After stealing money from the bank vault, the bank robber was seen fishing on the Mississippi river bank."]
    inputs = tokenizer(utt, return_tensors="tf", padding="max_length", truncation=True, max_length=22)
    """
    0 [CLS]
    1 after
    2 stealing
    3 money
    4 from
    5 the
    6 bank
    7 vault
    8 ,
    9 the
    10 bank
    11 robber
    12 was
    13 seen
    14 fishing
    15 on
    16 the
    17 mississippi
    18 river
    19 bank
    20 .
    21 [SEP]
    
    bank单词的位置分别在6, 10, 19
    """
    outputs = model(inputs)
    hidden_states = outputs[2]  # 获得各个隐藏层输出
    tokens_embedding = tf.reduce_sum(hidden_states[-4:], axis=0) # 使用加和方式
    bank_vault = tokens_embedding[0][6]
    bank_robber = tokens_embedding[0][10]
    river_bank = tokens_embedding[0][19]
    consine_sim_tensor = tf.keras.losses.cosine_similarity(bank_vault, [bank_robber, river_bank])
    print(f"consine_sim_tensor : {consine_sim_tensor}")
    # consine_sim_tensor : [-0.93863535 -0.69570863]
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37

    可以看出**bank_vault(银行金库)和bank_robber(银行抢劫犯)**中的bank相似度更高些,合理!

    完整代码

    from transformers import AutoTokenizer, TFAutoModel
    import tensorflow as tf
    import matplotlib.pyplot as plt
    
    # 加载模型
    model_name = "bert-base-uncased"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = TFAutoModel.from_pretrained(model_name,
                                        output_hidden_states=True)  # Whether the model returns all hidden-states.
    
    # 输入测试句子
    utt = ['今天的月亮又大又圆', '月亮真的好漂亮啊', '今天去看电影吧', "爱情睡醒了,天琪抱着小贝进酒店", "侠客行风万里"]
    inputs = tokenizer(utt, return_tensors="tf", padding="max_length", truncation=True, max_length=64)
    outputs = model(inputs)
    hidden_states = outputs[2]  # 获得各个隐藏层输出
    """
    解释下输出(hidden_states):
    1. The layer number (13 layers)
    2. The batch number (5 sentence) 也就是输入句子的个数
    3. The word / token number (64 tokens in our sentence) 也就是max_length
    4. The hidden unit / feature number (768 features)
    
    疑惑点:
    1.为啥是13层?bert不是12层吗?
    第一层是输入的嵌入层,其余12层才是bert的
    """
    print("Number of layers:", len(hidden_states), "  (initial embeddings + 12 BERT layers)")
    
    layer_i = 0
    print("Number of batches:", len(hidden_states[layer_i]))
    
    batch_i = 0
    print("Number of tokens:", len(hidden_states[layer_i][batch_i]))
    
    token_i = 0
    print("Number of hidden units:", len(hidden_states[layer_i][batch_i][token_i]))
    
    # For the 5th token in our sentence, select its feature values from layer 5.
    token_i = 5
    layer_i = 5
    vec = hidden_states[layer_i][batch_i][token_i]
    
    # Plot the values as a histogram to show their distribution.
    plt.figure(figsize=(10, 10))
    plt.hist(vec, bins=200)
    plt.show()
    
    
    # Concatenate the tensors for all layers. We use `stack` here to
    # create a new dimension in the tensor.
    sentence_embeddings = tf.stack(hidden_states, axis=0)  # 在维度0的位置插入,也就是把13放入最前面
    print(f"sentence_embeddings.shape : {sentence_embeddings.shape}")
    
    # 调换维度,使每个词都有13层的嵌入表示
    sentence_embeddings_perm = tf.transpose(sentence_embeddings, perm=[1, 2, 0, 3])
    print(f"sentence_embeddings_perm.shape : {sentence_embeddings_perm.shape}")
    
    # 获取词的稠密向量
    ## 第一种方式:拼接后四层的稠密向量
    for sentence_embedding in sentence_embeddings_perm:  # 获取每个句子的embedding
        print(f"sentence_embedding.shape: {sentence_embedding.shape}")
        token_vecs_cat = []
        for token_embedding in sentence_embedding:  # 获取句子每个词的embedding
            print(f"token_embedding.shape : {token_embedding.shape}")
            cat_vec = tf.concat([token_embedding[-1], token_embedding[-2], token_embedding[-3], token_embedding[-4]], axis=0)
            print(f"cat_vec.shape : {cat_vec.shape}")
            token_vecs_cat.append(cat_vec)
        print(f"len(token_vecs_cat) : {len(token_vecs_cat)}")
    
    ## 第二种方式:加和后四层的稠密向量
    for sentence_embedding in sentence_embeddings_perm:  # 获取每个句子的embedding
        print(f"sentence_embedding.shape: {sentence_embedding.shape}")
        token_vecs_cat = []
        for token_embedding in sentence_embedding:  # 获取句子每个词的embedding
            print(f"token_embedding.shape : {token_embedding.shape}")
            cat_vec = sum(token_embedding[-4:])
            print(f"cat_vec.shape : {cat_vec.shape}")
            token_vecs_cat.append(cat_vec)
        print(f"len(token_vecs_cat) : {len(token_vecs_cat)}")
    
    
    # 获取句子的稠密向量
    ## 平均每个token倒数第二层的稠密向量
    token_vecs = sentence_embeddings[-2]
    print(f"token_vecs.shape : {token_vecs.shape}")
    sentences_embedding = tf.reduce_mean(token_vecs, axis=1)
    print(f"sentences_embedding.shape : {sentences_embedding.shape}")
    
    
    # 计算余弦相似度
    ## 不同句子间的相似度
    tensor_test = sentences_embedding[0]
    consine_sim_tensor = tf.keras.losses.cosine_similarity(tensor_test, sentences_embedding)
    print(f"consine_sim_tensor : {consine_sim_tensor}")
    
    
    ##探讨下相同词bank在不同上下文时其vector的相似度
    utt = ["After stealing money from the bank vault, the bank robber was seen fishing on the Mississippi river bank."]
    inputs = tokenizer(utt, return_tensors="tf", padding="max_length", truncation=True, max_length=22)
    """
    0 [CLS]
    1 after
    2 stealing
    3 money
    4 from
    5 the
    6 bank
    7 vault
    8 ,
    9 the
    10 bank
    11 robber
    12 was
    13 seen
    14 fishing
    15 on
    16 the
    17 mississippi
    18 river
    19 bank
    20 .
    21 [SEP]
    
    bank单词的位置分别在6, 10, 19
    """
    outputs = model(inputs)
    hidden_states = outputs[2]  # 获得各个隐藏层输出
    tokens_embedding = tf.reduce_sum(hidden_states[-4:], axis=0) # 使用加和方式
    bank_vault = tokens_embedding[0][6]
    bank_robber = tokens_embedding[0][10]
    river_bank = tokens_embedding[0][19]
    consine_sim_tensor = tf.keras.losses.cosine_similarity(bank_vault, [bank_robber, river_bank])
    print(f"consine_sim_tensor : {consine_sim_tensor}")
    # consine_sim_tensor : [-0.93863535 -0.69570863]
    # 可以看出bank_vault(银行金库)和bank_robber(银行抢劫犯)中的bank相似度更高些,合理!
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
  • 相关阅读:
    JavaEE 初阶篇-生产者与消费者模型(线程通信)
    【SpringSecurity】BCrypt密码加密和解密 一文学会使用BCryptPasswordEncoder
    设计模式——桥接模式
    深度学习环境搭建常用网址、conda/pip命令行整理(pytorch、paddlepaddle等环境搭建)
    数学建模常用模型
    R语言时间序列数据算术运算:使用diff函数计算时间序列数据的逐次差分、使用时间序列之间的除法计算相对变化率(乘以100获得百分比)
    Unity中Shader光强与环境色
    为金融而生的区块链Injective(INJ)
    Linux怎么安装python3.8
    图学习【参考资料2】-知识补充与node2vec代码注解
  • 原文地址:https://blog.csdn.net/weixin_43730035/article/details/125819761