• 【面试专栏】第四篇:Java基础:集合篇-Map、HashMap、Hashtable


    Map

    HashMap(底层是数组+链表/红黑树,无序键值对集合,非线程安全)

    • 基于哈希表实现,链地址法。
    • loadFactor默认为0.75,threshold(阈)为12,并创建一个大小为16的Entry数组。
    • 在遍历时是无序的,如需有序,建议使用TreeMap。
    • 采用数组方式存储key、value构成的Entry对象,无容量限制。
    • 基于key hash寻找Entry对象存放在数组中的位置,对于hash冲突采用链表/红黑树的方式来解决。
    • HashMap在插入元素时可能会扩大数组的容量,在扩大容量时需要重新计算hash,并复制对象到新的数组中。
    • 是非线程安全的。
    • 哈希冲突时采用链表法的类,一个哈希桶多于8个元素改为TreeNode
    • 哈希冲突时采用红黑树存储的类,一个哈希桶少于6个元素改为Node
    • 某个桶对应的链表过长的话搜索效率低,改为红黑树效率会提高。
    • 为何按位与而不是取摸 hashmap的iterator读取时是否会读到另一个线程put的数据 红黑树;hashmap报ConcurrentModificationException的情况
    • Hash冲突中链表结构的数量大于8个,则调用树化转为红黑树结构,红黑树查找稍微快些;红黑树结构的数量小于6个时,则转为链表结构
    • 如果加载因子越大,对空间的利用更充分,但是查找效率会降低(链表长度会越来越长);如果加载因子太小,那么表中的数据将过于稀疏(很多空间还没用,就开始扩容了),对空间造成严重浪费。如果我们在构造方法中不指定,则系统默认加载因子为0.75,这是一个比较理想的值,一般情况下我们是无需修改的。
      • 一般对哈希表的散列很自然地会想到用hash值对length取模(即除法散列法),Hashtable中也是这样实现的,这种方法基本能保证元素在哈希表中散列的比较均匀,但取模会用到除法运算,效率很低,HashMap中则通过h&(length-1)的方法来代替取模,同样实现了均匀的散列,但效率要高很多,这也是HashMap对Hashtable的一个改进。
      • 哈希表的容量一定要是2的整数次幂。首先,length为2的整数次幂的话,h&(length-1)就相当于对length取模,这样便保证了散列的均匀,同时也提升了效率;其次,length为2的整数次幂的话,为偶数,这样length-1为奇数,奇数的最后一位是1,这样便保证了h&(length-1)的最后一位可能为0,也可能为1(这取决于h的值),即与后的结果可能为偶数,也可能为奇数,这样便可以保证散列的均匀性,而如果length为奇数的话,很明显length-1为偶数,它的最后一位是0,这样h&(length-1)的最后一位肯定为0,即只能为偶数,这样任何hash值都只会被散列到数组的偶数下标位置上,这便浪费了近一半的空间,因此,length取2的整数次幂,是为了使不同hash值发生碰撞的概率较小,这样就能使元素在哈希表中均匀地散列。

    Map#Entry(接口)

    
    interface Entry {
        K getKey();
    
        V getValue();
    
        V setValue(V value);
    
        boolean equals(Object o);
        int hashCode();
        public static , V> Comparator> comparingByKey() {
            return (Comparator> & Serializable)
                (c1, c2) -> c1.getKey().compareTo(c2.getKey());
        }
    
        public static > Comparator> comparingByValue() {
            return (Comparator> & Serializable)
                (c1, c2) -> c1.getValue().compareTo(c2.getValue());
        }
    
        public static  Comparator> comparingByKey(Comparator cmp) {
            Objects.requireNonNull(cmp);
            return (Comparator> & Serializable)
                (c1, c2) -> cmp.compare(c1.getKey(), c2.getKey());
        }
    
        public static  Comparator> comparingByValue(Comparator cmp) {
            Objects.requireNonNull(cmp);
            return (Comparator> & Serializable)
                (c1, c2) -> cmp.compare(c1.getValue(), c2.getValue());
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32

    HashMap#Node(Map.Entry的实现,链表的基本元素)

    static class Node implements Map.Entry {
        final int hash;
        final K key;
        V value;
        Node next;
    
        Node(int hash, K key, V value, Node next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }
    
        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }
    
        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }
    
        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }
    
        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry e = (Map.Entry)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39

    HashMap#TreeNode(Map.Entry的实现,红黑树的基本元素)

     static final class TreeNode extends LinkedHashMap.Entry {
        TreeNode parent;  // red-black tree links
        TreeNode left;
        TreeNode right;
        TreeNode prev;    // needed to unlink next upon deletion
        boolean red;
        TreeNode(int hash, K key, V val, Node next) {
            super(hash, key, val, next);
        }
          //...
     }
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12

    LinkedHashMap#Entry

      static class Entry extends HashMap.Node {
        Entry before, after;
        Entry(int hash, K key, V value, Node next) {
            super(hash, key, value, next);
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

    成员变量

    /**
     * The default initial capacity - MUST be a power of two.
     */
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
    
    /**
     * The maximum capacity, used if a higher value is implicitly specified
     * by either of the constructors with arguments.
     * MUST be a power of two <= 1<<30.
     */
    static final int MAXIMUM_CAPACITY = 1 << 30;
    
    /**
     * The load factor used when none specified in constructor.
     */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    
    /**
     * The bin count threshold for using a tree rather than list for a
     * bin.  Bins are converted to trees when adding an element to a
     * bin with at least this many nodes. The value must be greater
     * than 2 and should be at least 8 to mesh with assumptions in
     * tree removal about conversion back to plain bins upon
     * shrinkage.
     */
    static final int TREEIFY_THRESHOLD = 8;
    
    /**
     * The bin count threshold for untreeifying a (split) bin during a
     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
     * most 6 to mesh with shrinkage detection under removal.
     */
    static final int UNTREEIFY_THRESHOLD = 6;
    
    /**
     * The smallest table capacity for which bins may be treeified.
     * (Otherwise the table is resized if too many nodes in a bin.)
     * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
     * between resizing and treeification thresholds.
     */
    static final int MIN_TREEIFY_CAPACITY = 64; 
    /**
     * The table, initialized on first use, and resized as
     * necessary. When allocated, length is always a power of two.
     * (We also tolerate length zero in some operations to allow
     * bootstrapping mechanics that are currently not needed.)
     */
    transient Node[] table;
    
    /**
     * Holds cached entrySet(). Note that AbstractMap fields are used
     * for keySet() and values().
     */
    transient Set> entrySet;
    
    /**
     * The number of key-value mappings contained in this map.
     */
    transient int size;
    
    /**
     * The number of times this HashMap has been structurally modified
     * Structural modifications are those that change the number of mappings in
     * the HashMap or otherwise modify its internal structure (e.g.,
     * rehash).  This field is used to make iterators on Collection-views of
     * the HashMap fail-fast.  (See ConcurrentModificationException).
     */
    transient int modCount;
    
    /**
     * The next size value at which to resize (capacity * load factor).
     *
     * @serial
     */
    // (The javadoc description is true upon serialization.
    // Additionally, if the table array has not been allocated, this
    // field holds the initial array capacity, or zero signifying
    // DEFAULT_INITIAL_CAPACITY.) 
    // HashMap的阈值,用于判断是否需要调整HashMap的容量(threshold = 容量*装载因子)
    int threshold;
    
    /**
     * The load factor for the hash table.
     *
     * @serial
     */
    final float loadFactor;
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88

    构造方法

    注意哪怕是指定了初始容量,也不会直接初始化table,而是在第一次put时调用resize来初始化table,resize里会将threshold视为初始容量。

    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor; 
        // 阈值为不小于容量的2的幂次
        this.threshold = tableSizeFor(initialCapacity);
    }
    
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }
    
    /**
     * Constructs an empty HashMap with the default initial capacity
     * (16) and the default load factor (0.75).
     */
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25

    tableSizeFor(找到大于等于initialCapacity的最小的2的幂次以及原因)

    /**
     * Returns a power of two size for the given target capacity.
     */
    static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12

    hash(hash算法,算法比较高效、均匀)

    - static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    
    • 1
    • 2
    • 3

    }

    • key的hash值高16位不变,低16位与高16位异或作为key的最终hash值。(h >>> 16,表示无符号右移16位,高位补0,任何数跟0异或都是其本身,因此key的hash值高16位不变。)
    • 保证了对象的hashCode的高16位的变化能反应到低16位中,

    hash to index

    • 如何根据hash值计算index?(put和get中的代码)
    • n = table.length;
      • index = (n-1)& hash;
      • 当n总是2的n次方时,hash & (n-1)运算等价于h%n,但是&比%具有更高的效率。

    put

    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }
    
    • 1
    • 2
    • 3
    • onlyIfAbsent如果为true,只有在hashmap没有该key的时候才添加
    • evict如果为false,hashmap为创建模式;只有在使用Map集合作为构造器创建LinkedHashMap或HashMap时才会为false。
    • 这两个参数均为实现java8的新接口而设置
      Node newNode(int hash, K key, V value, Node next) {
        return new Node<>(hash, key, value, next);
    }
      
    
     final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node[] tab; // table
     Node p;  // node pointer
     int n, i; // n 为length, i 为 node index
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
         // index处没有元素,则直接放入新节点
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
      // index处有元素
            Node e; 
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
     // 假如key是相同的,那么替换value即可
                e = p;
            else if (p instanceof TreeNode)
     // key不同,但如果p是红黑树根节点,那么将新节点放入红黑树
                e = ((TreeNode)p).putTreeVal(this, tab, hash, key, value);
            else {
     // key不同,但如果p是链表头节点,那么判断链表中是否有该节点,如没有,则将新节点插入到链表尾部
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
         // 插入后如果发现已经链表长度已经适合转为红黑树了,则转换
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    // 链表中某元素key和key相同,则替换value即可
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount; 
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57

    扩容 resize

    • 扩容函数,如果hash桶为空,初始化默认大小,否则双倍扩容
    • 注意!!因为扩容为2的倍数,根据hash桶的计算方法,元素哈希值不变
    • 所以元素在新的hash桶的下标,要不跟旧的hash桶下标一致,要不增加1倍。
    • cap:capacity
    • thr:threshold
        - final Node[] resize() {
        Node[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        Node[] newTab = (Node[])new Node[newCap];
        table = newTab;
    - 
    
    - 	if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node e;
                if ((e = oldTab[j]) != null) {
    -  j位置原本元素存在
                    oldTab[j] = null;
                    if (e.next == null)
    -  如果该位置没有形成链表,则再次计算index,放入新table
    -  假设扩容前的table大小为2的N次方,有上述put方法解析可知,元素的table索引为其hash值的后N位确定
    - 那么扩容后的table大小即为2的N+1次方,则其中元素的table索引为其hash值的后N+1位确定,比原来多了一位
    - 因此,table中的元素只有两种情况:
    - 元素hash值第N+1位为0:不需要进行位置调整
        - 元素hash值第N+1位为1:调整至原索引的两倍位置
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
    -  如果该位置形成了红黑树,则split
                        ((TreeNode)e).split(this, newTab, j, oldCap);
                    else { // preserve order
    -  如果该位置形成了链表,则分成两个链表,分别放在0~oldCap,oldCap~oldCap*2位置处
                        Node loHead = null, loTail = null;
                        Node hiHead = null, hiTail = null;
                        Node next;
                        do {
                            next = e.next;
    //  用于确定元素hash值第N+1位是否为0:
    // 若为0,则使用loHead与loTail,将元素移至新table的原索引处
    // 若不为0,则使用hiHead与hiHead,将元素移至新table的两倍索引处
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86

    get(O(logn))

    public V get(Object key) {
        Node e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }
    
    
      final Node getNode(int hash, Object key) {
        Node[] tab; Node first, e; int n; K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
    //  table不为空,且hash对应index元素不为空
    //  如果index位置就是我们要找的key,则直接返回
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
    //  如果不是,则从链表或红黑树的角度继续找
            if ((e = first.next) != null) {
                if (first instanceof TreeNode)
                    return ((TreeNode)first).getTreeNode(hash, key);
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29

    remove

    public V remove(Object key) {
        Node e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
            null : e.value;
    }
    // value=null,matchValue=false,movable=true
        final Node removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        Node[] tab; Node p; int n, index;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
            Node node = null, e; K k; V v;
         // 1) 如果hash 对应index即为我们要找的key,则找到
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
         // 2) 从链表或红黑树的角度继续找
            else if ((e = p.next) != null) {
                if (p instanceof TreeNode)
                    node = ((TreeNode)p).getTreeNode(hash, key);
                else {
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
    // 找到后,根据找到的位置不同 相应地进行删除
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
                if (node instanceof TreeNode)
                    ((TreeNode)node).removeTreeNode(this, tab, movable);
                else if (node == p)
                    tab[index] = node.next;
                else
                    p.next = node.next;
                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49

    containsKey

    public boolean containsKey(Object key) {
        return getNode(hash(key), key) != null;
    }
    
    • 1
    • 2
    • 3

    containsValue

    public boolean containsValue(Object value) {
        Node[] tab; V v;
        if ((tab = table) != null && size > 0) {
            for (int i = 0; i < tab.length; ++i) {
                for (Node e = tab[i]; e != null; e = e.next) {
                    if ((v = e.value) == value ||
                        (value != null && value.equals(v)))
                        return true;
                }
            }
        }
        return false;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13

    a)链表转红黑树 treeifyBin

    /**
     * Replaces all linked nodes in bin at index for given hash unless
     * table is too small, in which case resizes instead.
     */
    final void treeifyBin(Node[] tab, int hash) {
        int n, index; Node e;
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
            resize();
        else if ((e = tab[index = (n - 1) & hash]) != null) {
            TreeNode hd = null, tl = null;
            do {
                TreeNode p = replacementTreeNode(e, null);
                if (tl == null)
                    hd = p;
                else {
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
            if ((tab[index] = hd) != null)
                hd.treeify(tab);
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24

    红黑树转链表 TreeNode#untreeify

    // final Node untreeify(HashMap map) {
        Node hd = null, tl = null;
        for (Node q = this; q != null; q = q.next) {
            Node p = map.replacementNode(q, null);
            if (tl == null)
                hd = p;
            else
                tl.next = p;
            tl = p;
        }
        return hd;
    }
    
    ### c)红黑树 查找 
    final TreeNode getTreeNode(int h, Object k) {
        return ((parent != null) ? root() : this).find(h, k, null);
    }
    
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19

    /**

    • Finds the node starting at root p with the given hash and key.
    • The kc argument caches comparableClassFor(key) upon first use
    • comparing keys.
      */
      final TreeNode find(int h, Object k, Class kc) {
      TreeNode p = this;
      do {
      int ph, dir; K pk;
      TreeNode pl = p.left, pr = p.right, q;
      if ((ph = p.hash) > h)
      p = pl;
      else if (ph < h)
      p = pr;
      else if ((pk = p.key) == k || (k != null && k.equals(pk)))
      return p;
      else if (pl == null)
      p = pr;
      else if (pr == null)
      p = pl;
      else if ((kc != null ||
      (kc = comparableClassFor(k)) != null) &&
      (dir = compareComparables(kc, k, pk)) != 0)
      p = (dir < 0) ? pl : pr;
      else if ((q = pr.find(h, k, kc)) != null)
      return q;
      else
      p = pl;
      } while (p != null);
      return null;
      }
    
    
    ### d)红黑树 添加
    - final TreeNode putTreeVal(HashMap map, Node[] tab,
                                   int h, K k, V v) {
        Class kc = null;
        boolean searched = false;
        TreeNode root = (parent != null) ? root() : this;
        for (TreeNode p = root;;) {
            int dir, ph; K pk;
            if ((ph = p.hash) > h)
                dir = -1;
            else if (ph < h)
                dir = 1;
            else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                return p;
            else if ((kc == null &&
                      (kc = comparableClassFor(k)) == null) ||
                     (dir = compareComparables(kc, k, pk)) == 0) {
                if (!searched) {
                    TreeNode q, ch;
                    searched = true;
                    if (((ch = p.left) != null &&
                         (q = ch.find(h, k, kc)) != null) ||
                        ((ch = p.right) != null &&
                         (q = ch.find(h, k, kc)) != null))
                        return q;
                }
                dir = tieBreakOrder(k, pk);
            }
    
            TreeNode xp = p;
            if ((p = (dir <= 0) ? p.left : p.right) == null) {
                Node xpn = xp.next;
                TreeNode x = map.newTreeNode(h, k, v, xpn);
                if (dir <= 0)
                    xp.left = x;
                else
                    xp.right = x;
                xp.next = x;
                x.parent = x.prev = xp;
                if (xpn != null)
                    ((TreeNode)xpn).prev = x;
                moveRootToFront(tab, balanceInsertion(root, x));
                return null;
            }
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48

    e)红黑树 删除

    /**
     * Removes the given node, that must be present before this call.
     * This is messier than typical red-black deletion code because we
     * cannot swap the contents of an interior node with a leaf
     * successor that is pinned by "next" pointers that are accessible
     * independently during traversal. So instead we swap the tree
     * linkages. If the current tree appears to have too few nodes,
     * the bin is converted back to a plain bin. (The test triggers
     * somewhere between 2 and 6 nodes, depending on tree structure).
     */
    final void removeTreeNode(HashMap map, Node[] tab,
                              boolean movable) {
        int n;
        if (tab == null || (n = tab.length) == 0)
            return;
        int index = (n - 1) & hash;
        TreeNode first = (TreeNode)tab[index], root = first, rl;
        TreeNode succ = (TreeNode)next, pred = prev;
        if (pred == null)
            tab[index] = first = succ;
        else
            pred.next = succ;
        if (succ != null)
            succ.prev = pred;
        if (first == null)
            return;
        if (root.parent != null)
            root = root.root();
        if (root == null || root.right == null ||
            (rl = root.left) == null || rl.left == null) {
            tab[index] = first.untreeify(map);  // too small
            return;
        }
        TreeNode p = this, pl = left, pr = right, replacement;
        if (pl != null && pr != null) {
            TreeNode s = pr, sl;
            while ((sl = s.left) != null) // find successor
                s = sl;
            boolean c = s.red; s.red = p.red; p.red = c; // swap colors
            TreeNode sr = s.right;
            TreeNode pp = p.parent;
            if (s == pr) { // p was s's direct parent
                p.parent = s;
                s.right = p;
            }
            else {
                TreeNode sp = s.parent;
                if ((p.parent = sp) != null) {
                    if (s == sp.left)
                        sp.left = p;
                    else
                        sp.right = p;
                }
                if ((s.right = pr) != null)
                    pr.parent = s;
            }
            p.left = null;
            if ((p.right = sr) != null)
                sr.parent = p;
            if ((s.left = pl) != null)
                pl.parent = s;
            if ((s.parent = pp) == null)
                root = s;
            else if (p == pp.left)
                pp.left = s;
            else
                pp.right = s;
            if (sr != null)
                replacement = sr;
            else
                replacement = p;
        }
        else if (pl != null)
            replacement = pl;
        else if (pr != null)
            replacement = pr;
        else
            replacement = p;
        if (replacement != p) {
            TreeNode pp = replacement.parent = p.parent;
            if (pp == null)
                root = replacement;
            else if (p == pp.left)
                pp.left = replacement;
            else
                pp.right = replacement;
            p.left = p.right = p.parent = null;
        }
    
        TreeNode r = p.red ? root : balanceDeletion(root, replacement);
    
        if (replacement == p) {  // detach
            TreeNode pp = p.parent;
            p.parent = null;
            if (pp != null) {
                if (p == pp.left)
                    pp.left = null;
                else if (p == pp.right)
                    pp.right = null;
            }
        }
        if (movable)
            moveRootToFront(tab, r);
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104

    f)红黑树 遍历

    • 使用next指针,类似链表方式,便可遍历红黑树。

    遍历(先迭代table,再迭代bucket->链表/红黑树)

    keySet

    keySet().iterator()

    public Set keySet() {
        Set ks = keySet;
        if (ks == null) {
            ks = new KeySet();
            keySet = ks;
        }
        return ks;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    final class KeySet extends AbstractSet {
        public final Iterator iterator()     { return new KeyIterator(); }
    }
    
    • 1
    • 2
    • 3

    KeyIterator实现了Iterator接口,并继承了HashIterator。前者仅适用于KeySet的迭代,后者适合所有基于HashMap的迭代。

    HashMap#HashIterator

    abstract class HashIterator {
        Node next;        // next entry to return
        Node current;     // current entry
        int expectedModCount;  // for fast-fail
        int index;             // current slot
    
        HashIterator() {
            expectedModCount = modCount;
            Node[] t = table;
            current = next = null;
            index = 0;
            if (t != null && size > 0) { // advance to first entry
                do {} while (index < t.length && (next = t[index++]) == null);
            }
        }
    
        public final boolean hasNext() {
            return next != null;
        }
    
        final Node nextNode() {
            Node[] t;
            Node e = next;
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            if (e == null)
                throw new NoSuchElementException();  
    // next的next为空的话,则继续遍历table,否则就返回next的next(链表或红黑树的下一个节点)
            if ((next = (current = e).next) == null && (t = table) != null) {
                do {} while (index < t.length && (next = t[index++]) == null);
            }
            return e;
        }
    
        public final void remove() {
            Node p = current;
            if (p == null)
                throw new IllegalStateException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            current = null;
            K key = p.key;
            removeNode(hash(key), key, null, false, false);
            expectedModCount = modCount;
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46

    HashMap#KeyIterator

    final class KeyIterator extends HashIterator
        implements Iterator {
        public final K next() { return nextNode().key; }
    }
    
    • 1
    • 2
    • 3
    • 4

    entrySet

    public Set> entrySet() {
        Set> es;
        return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 使用的是该迭代器:
    final class EntryIterator extends HashIterator
        implements Iterator> {
        public final Map.Entry next() { return nextNode(); }
    }
    
    • 1
    • 2
    • 3
    • 4

    多线程环境下的问题

    • 1.8中hashmap的确不会因为多线程put导致死循环(1.7代码中会这样子),但是依然有其他的弊端,比如数据丢失等等。因此多线程情况下还是建议使用ConcurrentHashMap。

    • 数据丢失:当多线程put的时候,当index相同而又同时达到链表的末尾时,另一个线程put的数据会把之前线程put的数据覆盖掉,就会产生数据丢失。

    if ((e = p.next) == null) {
                      p.next = newNode(hash, key, value, null);
     }
    
    
    • 1
    • 2
    • 3
    • 4

    Hashtable

    • Hashtable同样是基于哈希表实现的,同样每个元素是一个key-value对,其内部也是通过单链表解决冲突问题,容量不足(超过了阈值)时,同样会自动增长。
    • Hashtable也是JDK1.0引入的类,是线程安全的,能用于多线程环境中。
    • Hashtable同样实现了Serializable接口,它支持序列化,实现了Cloneable接口,能被克隆。
    • Hashtable#Entry
    private static class Entry implements Map.Entry {
        final int hash;
        final K key;
        V value;
        Entry next;
    
        protected Entry(int hash, K key, V value, Entry next) {
            this.hash = hash;
            this.key =  key;
            this.value = value;
            this.next = next;
        }
    
        @SuppressWarnings("unchecked")
        protected Object clone() {
            return new Entry<>(hash, key, value,
                                  (next==null ? null : (Entry) next.clone()));
        }
    
        // Map.Entry Ops
    
        public K getKey() {
            return key;
        }
    
        public V getValue() {
            return value;
        }
    
        public V setValue(V value) {
            if (value == null)
                throw new NullPointerException();
    
            V oldValue = this.value;
            this.value = value;
            return oldValue;
        }
    
        public boolean equals(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry e = (Map.Entry)o;
    
            return (key==null ? e.getKey()==null : key.equals(e.getKey())) &&
               (value==null ? e.getValue()==null : value.equals(e.getValue()));
        }
    
        public int hashCode() {
            return hash ^ Objects.hashCode(value);
        }
    
        public String toString() {
            return key.toString()+"="+value.toString();
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55

    成员变量

    /**
     * The hash table data.
     */
    private transient Entry[] table;
    
    /**
     * The total number of entries in the hash table.
     */
    private transient int count;
    
    /**
     * The table is rehashed when its size exceeds this threshold.  (The
     * value of this field is (int)(capacity * loadFactor).)
     *
     * @serial
     */
    private int threshold;
    
    /**
     * The load factor for the hashtable.
     *
     * @serial
     */
    private float loadFactor;
    
    /**
     * The number of times this Hashtable has been structurally modified
     * Structural modifications are those that change the number of entries in
     * the Hashtable or otherwise modify its internal structure (e.g.,
     * rehash).  This field is used to make iterators on Collection-views of
     * the Hashtable fail-fast.  (See ConcurrentModificationException).
     */
    private transient int modCount = 0;
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33

    构造方法

    public Hashtable(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal Capacity: "+
                                               initialCapacity);
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal Load: "+loadFactor);
    
        if (initialCapacity==0)
            initialCapacity = 1;
        this.loadFactor = loadFactor;
        table = new Entry[initialCapacity];
        threshold = (int)Math.min(initialCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
    }
    
    /**
     * Constructs a new, empty hashtable with the specified initial capacity
     * and default load factor (0.75).
     *
     * @param     initialCapacity   the initial capacity of the hashtable.
     * @exception IllegalArgumentException if the initial capacity is less
     *              than zero.
     */
    public Hashtable(int initialCapacity) {
        this(initialCapacity, 0.75f);
    }
    
    /**
     * Constructs a new, empty hashtable with a default initial capacity (11)
     * and load factor (0.75).
     */
    public Hashtable() {
        this(11, 0.75f);
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33

    Hashtable 的容量增加逻辑是乘2+1,保证奇数。
    在应用数据分布在等差数据集合(如偶数)上时,如果公差与桶容量有公约数n,则至少有(n-1)/n数量的桶是利用不到的。

    hash to index

    • int hash = key.hashCode();
      int index = (hash & 0x7FFFFFFF) % tab.length;
    • 取与之后一定是一个非负数
    • 0x7FFFFFFF is 0111 1111 1111 1111 1111 1111 1111 1111 : all 1 except the sign bit.
    • (hash & 0x7FFFFFFF) will result in a positive integer.
    • (hash & 0x7FFFFFFF) % tab.length will be in the range of the tab length.

    put(有锁)

    public synchronized V put(K key, V value) {
        // Make sure the value is not null
        if (value == null) {
            throw new NullPointerException();
        }
    
        // Makes sure the key is not already in the hashtable.
        Entry tab[] = table;
        int hash = key.hashCode();
        int index = (hash & 0x7FFFFFFF) % tab.length;
        @SuppressWarnings("unchecked")
        Entry entry = (Entry)tab[index];
        for(; entry != null ; entry = entry.next) {
            if ((entry.hash == hash) && entry.key.equals(key)) {
                V old = entry.value;
                entry.value = value;
                return old;
            }
        }
    
        addEntry(hash, key, value, index);
        return null;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    private void addEntry(int hash, K key, V value, int index) {
        modCount++;
    
        Entry tab[] = table;
        if (count >= threshold) {
            // Rehash the table if the threshold is exceeded
            rehash();
    
            tab = table;
            hash = key.hashCode();
            index = (hash & 0x7FFFFFFF) % tab.length;
        }
    
        // Creates the new entry.
        @SuppressWarnings("unchecked")
        Entry e = (Entry) tab[index];
        tab[index] = new Entry<>(hash, key, value, e);
        count++;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19

    扩容 rehash

    protected void rehash() {
        int oldCapacity = table.length;
        Entry[] oldMap = table;
    
        // overflow-conscious code
        int newCapacity = (oldCapacity << 1) + 1;
        if (newCapacity - MAX_ARRAY_SIZE > 0) {
            if (oldCapacity == MAX_ARRAY_SIZE)
                // Keep running with MAX_ARRAY_SIZE buckets
                return;
            newCapacity = MAX_ARRAY_SIZE;
        }
        Entry[] newMap = new Entry[newCapacity];
    
        modCount++;
        threshold = (int)Math.min(newCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
        table = newMap;
    
        for (int i = oldCapacity ; i-- > 0 ;) {
            for (Entry old = (Entry)oldMap[i] ; old != null ; ) {
                Entry e = old;
                old = old.next;
                // 所有元素重新散列
                int index = (e.hash & 0x7FFFFFFF) % newCapacity;
                e.next = (Entry)newMap[index];
                newMap[index] = e;
            }
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29

    get(有锁)

    public synchronized V get(Object key) {
        Entry tab[] = table;
        int hash = key.hashCode();
        int index = (hash & 0x7FFFFFFF) % tab.length;
        for (Entry e = tab[index] ; e != null ; e = e.next) {
            if ((e.hash == hash) && e.key.equals(key)) {
                return (V)e.value;
            }
        }
        return null;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11

    remove(有锁)

    public synchronized V remove(Object key) {
        Entry tab[] = table;
        int hash = key.hashCode();
        int index = (hash & 0x7FFFFFFF) % tab.length;
        @SuppressWarnings("unchecked")
        Entry e = (Entry)tab[index];
        for(Entry prev = null ; e != null ; prev = e, e = e.next) {
            if ((e.hash == hash) && e.key.equals(key)) {
                modCount++;
                if (prev != null) {
                    prev.next = e.next;
                } else {
                    tab[index] = e.next;
                }
                count--;
                V oldValue = e.value;
                e.value = null;
                return oldValue;
            }
        }
        return null;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • 相关阅读:
    selenuim【1】($x(‘xpath语法’)、WebDriverWait())
    【FreeRTOS】删除任务 用遥控器控制音乐
    MongoDB系列之Linux环境部署配置
    javaweb基于ssm的仓库管理系统
    栓Q八股文: C++ 14/17 新特性
    基于单片机的汽车智能仪表的设计
    云原生之深入解析如何合并多个kubeconfig文件
    Jetson TX2 刷机
    https想访问本地部署的http://localhost接口
    mongo实际业务场景实战
  • 原文地址:https://blog.csdn.net/qq_35530042/article/details/125860028