参考链接:傅里叶级数与傅里叶变换_Part2_周期为2Π的函数展开为傅里叶级数
对于周期为
T
=
2
π
T = 2\pi
T=2π周期函数,即
f
(
x
)
=
f
(
x
+
2
π
)
f\left( x \right) = f\left( {x + 2\pi } \right)
f(x)=f(x+2π) ,它的傅里叶级数展开形式如下:
f
(
x
)
=
a
0
2
+
∑
n
=
1
∞
a
n
cos
n
x
+
∑
n
=
1
∞
b
n
sin
n
x
f\left( x \right) = \frac{{{a_0}}}{2} + \sum\limits_{n = 1}^\infty {{a_n}\cos nx} + \sum\limits_{n = 1}^\infty {{b_n}\sin nx}
f(x)=2a0+n=1∑∞ancosnx+n=1∑∞bnsinnx
其中,
a
0
=
1
π
∫
−
π
π
f
(
x
)
d
x
a
n
=
1
π
∫
−
π
π
f
(
x
)
cos
n
x
d
x
b
n
=
1
π
∫
−
π
π
f
(
x
)
sin
n
x
d
x
对于,
f
(
t
)
=
f
(
t
+
2
L
)
f\left( t \right) = f\left( {t + 2L} \right)
f(t)=f(t+2L) ,周期为
T
=
2
L
T = 2L
T=2L的函数

如果想用运用Part2掌握的以
T
=
2
π
T = 2\pi
T=2π为周期的
f
(
t
)
=
f
(
t
+
2
π
)
f\left( t \right) = f\left( {t + 2\pi} \right)
f(t)=f(t+2π)的傅里级数展开公式,需要做一个换元。
令 x = π L t ⇒ t = L π x x = \frac{\pi }{L}t \Rightarrow t = \frac{L}{\pi }x x=Lπt⇒t=πLx
| t t t | x x x |
|---|---|
| 2 L 2L 2L | x = π L t = π L ⋅ 2 L = 2 π x = \frac{\pi }{L}t = \frac{\pi }{L} \cdot 2L = 2\pi x=Lπt=Lπ⋅2L=2π |
| 4 L 4L 4L | 4 π 4\pi 4π |
| 0 0 0 | 0 0 0 |
f
(
t
)
=
f
(
π
L
x
)
≜
g
(
x
)
f\left( t \right) = f\left( {\frac{\pi }{L}x} \right) \triangleq g\left( x \right)
f(t)=f(Lπx)≜g(x)
通过换元,我们就把周期为
T
=
2
L
T = 2L
T=2L的函数,
f
(
t
)
=
f
(
t
+
2
L
)
f\left( t \right) = f\left( {t + 2L} \right)
f(t)=f(t+2L) 变成了周期为
T
=
2
π
T = 2\pi
T=2π的函数
g
(
t
)
=
g
(
t
+
2
π
)
g\left( t \right) =g\left( {t + 2\pi} \right)
g(t)=g(t+2π) 。
根据Part2的内容我们知道
g
(
x
)
=
a
0
2
+
∑
n
=
1
∞
a
n
cos
n
x
+
∑
n
=
1
∞
b
n
sin
n
x
g\left( x \right) = \frac{{{a_0}}}{2} + \sum\limits_{n = 1}^\infty {{a_n}\cos nx} + \sum\limits_{n = 1}^\infty {{b_n}\sin nx}
g(x)=2a0+n=1∑∞ancosnx+n=1∑∞bnsinnx
其中,
a
0
=
1
π
∫
−
π
π
g
(
x
)
d
x
a
n
=
1
π
∫
−
π
π
g
(
x
)
cos
n
x
d
x
b
n
=
1
π
∫
−
π
π
g
(
x
)
sin
n
x
d
x
👇
现在要做的,就是把
x
=
π
L
t
x = \frac{\pi }{L}t
x=Lπt带进去
cos n x = cos n π L t , sin n x = sin n π L t \cos nx = \cos \frac{{n\pi }}{L}t,\sin nx = \sin \frac{{n\pi }}{L}t cosnx=cosLnπt,sinnx=sinLnπt
g ( x ) = f ( t ) g\left( x \right) = f\left( t \right) g(x)=f(t)
| x x x | t t t |
|---|---|
| − π -\pi −π | t = L π x = L π ⋅ − π = − L t = \frac{L}{\pi }x = \frac{L}{\pi } \cdot - \pi = - L t=πLx=πL⋅−π=−L |
| π \pi π | L L L |
∫ − π π d x = ∫ − L L d π L t = π L ∫ − L L d t \int_{ - \pi }^\pi {dx} = \int_{ - L}^L {d\frac{\pi }{L}t} = \frac{\pi }{L}\int_{ - L}^L {dt} ∫−ππdx=∫−LLdLπt=Lπ∫−LLdt
1 π ∫ − π π d x = 1 π ⋅ ( π L ∫ − L L d t ) = 1 L ∫ − L L d t \frac{1}{\pi }\int_{ - \pi }^\pi {dx} = \frac{1}{\pi } \cdot \left( {\frac{\pi }{L}\int_{ - L}^L {dt} } \right) = \frac{1}{L}\int_{ - L}^L {dt} π1∫−ππdx=π1⋅(Lπ∫−LLdt)=L1∫−LLdt
讲上述算出的式子带入到 g ( x ) g\left( x\right) g(x)中。
f
(
t
)
=
g
(
x
)
=
a
0
2
+
∑
n
=
1
∞
a
n
cos
n
π
L
t
+
∑
n
=
1
∞
b
n
sin
n
π
L
t
f\left( t \right) = g\left( x\right) = \frac{{{a_0}}}{2} + \sum\limits_{n = 1}^\infty {{a_n}\cos \pmb{\frac{{n\pi }}{L}t}} + \sum\limits_{n = 1}^\infty {{b_n}\sin \pmb{\frac{{n\pi }}{L}t}}
f(t)=g(x)=2a0+n=1∑∞ancosLnπtLnπt+n=1∑∞bnsinLnπtLnπt
其中
a
0
=
1
L
∫
−
L
L
f
(
t
)
d
t
a
n
=
1
L
∫
−
L
L
f
(
t
)
cos
n
π
L
t
d
t
b
n
=
1
L
∫
−
L
L
f
(
t
)
sin
n
π
L
t
d
t
在工程当中,由于时间是 t ≥ 0 t \ge 0 t≥0的,所以 t t t是从 0 0 0开始的,假设周期为 T = 2 L T=2L T=2L, ω ≜ π L = 2 π 2 L = 2 π T \omega \triangleq \frac{\pi }{L} = \frac{{2\pi }}{{2L}} = \frac{{2\pi }}{T} ω≜Lπ=2L2π=T2π ,这个 ω \omega ω本质上就是角频率。
再来看积分,因为 − L -L −L ~ L L L是一个周期, 也 0 0 0 ~ 2 L 2L 2L是一个周期,因此 ∫ − L L d t → ∫ 0 2 L d t → ∫ 0 T d t \int_{ - L}^L {dt} \to \int_0^{2L} {dt} \to \int_0^T {dt} ∫−LLdt→∫02Ldt→∫0Tdt,把上述的符号带入到周期为 T = 2 L T = 2L T=2L的傅里叶级数展开公式当中,就可以得到。
f ( t ) = a 0 2 + ∑ n = 1 ∞ a n cos n ω t + ∑ n = 1 ∞ b n sin n ω t f\left( t \right) = \frac{{{a_0}}}{2} + \sum\limits_{n = 1}^\infty {{a_n}\cos n\omega t} + \sum\limits_{n = 1}^\infty {{b_n}\sin n\omega t} f(t)=2a0+n=1∑∞ancosnωt+n=1∑∞bnsinnωt
a
0
=
2
T
∫
0
T
f
(
t
)
d
t
a
n
=
2
T
∫
0
T
f
(
t
)
cos
n
ω
t
d
t
b
n
=
2
T
∫
0
T
f
(
t
)
sin
n
ω
t
d
t
伏笔: 考虑,当 T → ∞ T \to \infty T→∞时, f ( t ) f\left( t \right) f(t) 不再为周期函数,那时候 f ( t ) f\left( t \right) f(t)该给如何展开呢? 这就是傅里叶变换啦。
把下图这个函数,傅里叶展开一下

T
=
20
,
ω
=
2
π
T
=
2
π
20
=
1
10
π
T = 20,\omega = \frac{{2\pi }}{T} = \frac{{2\pi }}{{20}} = \frac{1}{{10}}\pi
T=20,ω=T2π=202π=101π
a 0 = 2 T ∫ 0 T f ( t ) d t = 2 T ∫ 0 T 2 7 d t + 2 T ∫ T 2 T 3 d t = 7 + 3 = 10 {a_0} = \frac{2}{T}\int_0^T {f\left( t \right)dt} = \frac{2}{T}\int_0^{\frac{T}{2}} {7dt} + \frac{2}{T}\int_{\frac{T}{2}}^T {3dt} = 7 + 3 = 10 a0=T2∫0Tf(t)dt=T2∫02T7dt+T2∫2TT3dt=7+3=10
a
n
=
2
T
∫
0
T
f
(
t
)
cos
n
ω
t
d
t
=
2
T
∫
0
T
2
7
cos
n
π
10
t
d
t
+
2
T
∫
T
2
T
3
cos
n
π
10
d
t
=
1
10
⋅
(
70
n
π
sin
n
π
10
t
∣
0
10
)
+
1
10
⋅
(
30
n
π
sin
n
π
10
t
∣
10
20
)
=
1
10
⋅
(
0
+
0
)
=
0
b
n
=
2
T
∫
0
T
f
(
t
)
sin
n
ω
t
d
t
=
2
T
∫
0
T
2
7
sin
n
π
10
t
d
t
+
2
T
∫
T
2
T
3
sin
n
π
10
d
t
=
1
10
⋅
(
−
70
n
π
cos
n
π
10
t
∣
0
10
)
+
1
10
⋅
(
−
30
n
π
cos
n
π
10
t
∣
10
20
)
=
−
7
n
π
(
cos
n
π
−
1
)
−
3
n
π
(
cos
2
n
π
−
cos
n
π
)
当 n n n为偶数时, cos n π = cos 2 n π = 1 \cos n\pi = \cos 2n\pi = 1 cosnπ=cos2nπ=1
b n = − 7 n π ( 1 − 1 ) + − 3 n π ( 1 − 1 ) = 0 {b_n} = - \frac{7}{{n\pi }}\left( {1 - 1} \right) + - \frac{3}{{n\pi }}\left( {1 - 1} \right) = 0 bn=−nπ7(1−1)+−nπ3(1−1)=0
当 n n n为奇数时, cos n π = − 1 , cos 2 n π = 1 \cos n\pi = - 1,\cos 2n\pi = 1 cosnπ=−1,cos2nπ=1
b n = − 7 n π ( − 1 − 1 ) − 3 n π [ 1 − ( − 1 ) ] = 8 n π {b_n} = - \frac{7}{{n\pi }}\left( { - 1 - 1} \right) - \frac{3}{{n\pi }}\left[ {1 - \left( { - 1} \right)} \right] = \frac{8}{{n\pi }} bn=−nπ7(−1−1)−nπ3[1−(−1)]=nπ8
所以
f
(
t
)
=
10
2
+
∑
n
=
1
∞
0
⋅
cos
π
10
n
t
+
∑
n
=
1
∞
b
n
sin
π
10
n
t
=
5
+
∑
n
=
1
∞
8
n
π
⋅
sin
n
π
10
t
,
n
=
1
,
3
,
5
,
7
,
⋯
下面给出MatLAB仿真结果

MatLAB代码如下:
close all; clear all; clc;
dt = 0.1;
t = 0:dt:40;
ft = zeros(length(t),1);
for i=1:length(t)
if (t(i) >= 0 && t(i) <= 10) || (t(i) >= 20 && t(i) <= 30)
ft(i) = 7;
else
ft(i) = 3;
end
end
figure(1);plot(t,ft,'r-','LineWidth',2);grid on;hold on;axis([0,40,0,10]);
FourierSerier0 = 5 * ones(length(t),1);
% n = 1
FourierSerier1 = (8/(1*pi)) * sin((1*pi/10)*t);
% n = 3
FourierSerier3 = (8/(3*pi)) * sin((3*pi/10)*t);
% n = 5
FourierSerier5 = (8/(5*pi)) * sin((5*pi/10)*t);
% n = 7
FourierSerier7 = (8/(7*pi)) * sin((7*pi/10)*t);
% n = 9
FourierSerier9 = (8/(9*pi)) * sin((9*pi/10)*t);
% n = 11
FourierSerier11 = (8/(11*pi)) * sin((11*pi/10)*t);
Fs5 = FourierSerier0 + FourierSerier1 + FourierSerier3 + FourierSerier5;
Fs5 = Fs5';
Fs11 = FourierSerier0 + FourierSerier1 + FourierSerier3 + FourierSerier5 + FourierSerier7 + FourierSerier9 + FourierSerier11;
Fs11 = Fs11';
plot(t,Fs5,'b-','LineWidth',1.5); hold on;
plot(t,Fs11,'k-','LineWidth',2.5);hold on;
legend('f(t)','f(t)傅里叶级数(n取到5)',' f(t)傅里叶级数(n取到11)');
系列学习链接:欢迎大家点赞、收藏、留言讨论。
傅里叶级数与傅里叶变换_Part0_欧拉公式证明+三角函数和差公式证明
傅里叶级数与傅里叶变换_Part2_周期为2Π的函数展开为傅里叶级数
傅里叶级数与傅里叶变换_Part3_周期为2L的函数展开为傅里叶级数