如何使用pandas的join来比对两个dataframe的重合度,交集
# 如何理解pandas的join函数
import pandas as pd
columns = ['gene','count']
data = [['1', 1],['2', 2],['3', 3]]
df1 = pd.DataFrame(
data=data,
columns=columns
)
columns = ['gene','count']
data = [['3', 3],['4', 4],['5', 5]]
df2 = pd.DataFrame(
data=data,
columns=columns
)
# 如何使用和理解join
df3 = df1.join(df2.set_index('gene'), on='gene',lsuffix='_l', rsuffix='_r')
df31 = df1.join(df2.set_index('gene'), on='gene')
df33 = df1.join(df2, lsuffix="_l")
df4 = pd.merge(df1, df2,left_on='gene', right_on='gene') # 这种是我想要的;

merge这个是我想要的;

参考材料:
Pandas中两个dataframe的交集和差集_JasonLiu1919的博客-CSDN博客_pandas 差集