• 用Python制作可视化GUI界面,一键实现多种风格的照片处理


    今天向大家展示了如何通过一键点击实现将头像变成动漫风的实践。

    无非是在制作的UI界面当中,在用户上传了照片之后,后端的脚本在接收到照片之后,借助对抗生成神经网络来生成具有动漫风格的头像。

    完整代码、技术交流,文末获取

    图片

    今天小编想在上述成果的基础之上,添加上将“修复老照片”的功能,曾经在抖音上面也是吸引了不少的流量,内容就是发布一张老照片修复后的效果呈现,毕竟老照片容易引起人的共鸣,甚至有不少人通过修复老照片,找到失散多年的亲人。

    图片

    照片修复的具体实操

    那么我们就在已经完成的UI界面上面再添加几个按钮,如下图所示,分别是“动漫风格”、“老照片修复”以及“素描风格”

    图片

    当我们点击“动漫风格”时,程序会针对先前的步骤将上传的图片变成动漫风格的头像,当我们点击“老照片修复”时,会针对上传的照片进行修复,对应的代码是Github上面一个名叫DeOldify的项目,在Github上面获得了15.2K的小星星,可谓是非常的火爆,该作者给我们提供了一个多语言版本的接口,调用这个接口我们可以快速的使用该项目的能力,为老照片上色,代码如下

    import requests
    r = requests.post(
        "https://api.deepai.org/api/colorizer",
        files={
            'image': open('自己本地图片的路径', 'rb'),
        },
        headers={'': '........'}
    )
    output_url = r.json()["output_url"]
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    同时我们也需要将图片保存在本地,代码如下

    def deoldify_action(self):
        r = requests.post(
            "https://api.deepai.org/api/colorizer",
            files={
                'image': open(imgNamepath, 'rb'),
            },
            headers={'': 'fe26be2a-b66e-4cfc-8f4d-514f683e9812'}
        )
        output_url = r.json()["output_url"]
        ## 将图片保存在本地
        response = requests.get(output_url, stream=True)
        image_name = imgNamepath.split(".")[0]
        try:
            with open(image_name + '_oldified.png', 'wb') as logFile:
                for chunk in response:
                    logFile.write(chunk)
                logFile.close()
                print("Download done!")
        except Exception as e:
            print("Download log error!")
    
        image_name = imgNamepath.split(".")[0]
        imgShow = QtGui.QPixmap(image_name + '_oldified' + ".png").scaled(self.ui.label_5.size(), aspectMode=Qt.KeepAspectRatio)
        ## 将变换过之后的照片显示在界面上
        self.ui.label_5.setFixedSize(imgShow.width(), imgShow.height())
        self.ui.label_5.setScaledContents(True)
        self.ui.label_5.setPixmap(imgShow)
        print(f"image saved: {image_name}")
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28

    最后出来的效果如下图所示

    图片

    将照片风格素描化的具体实操

    而当我们点击“素描风格”的单选框之后,便开始将上传的图片变成素描风格,代码如下

    def startAction_sumiao(self):    img = cv2.imread(imgNamepath)    gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)    inverted_gray_image = 255 - gray_image    blurred_inverted_gray_image = cv2.GaussianBlur(inverted_gray_image, (19, 19), 0)    image_name = imgNamepath.split(".")[0]    inverted_blurred_image = 255 - blurred_inverted_gray_image    sketck = cv2.divide(gray_image, inverted_blurred_image, scale=256.0)    ## 图像保存在本地    cv2.imwrite(image_name + '_sumiao.png', sketck)    ## 将变换过之后的照片显示在界面上    imgShow = QtGui.QPixmap(image_name + '_sumiao' + ".png").scaled(self.ui.label_5.size(), aspectMode=Qt.KeepAspectRatio)    self.ui.label_5.setFixedSize(imgShow.width(), imgShow.height())    self.ui.label_5.setScaledContents(True)    self.ui.label_5.setPixmap(imgShow)
    
    • 1

    我们来看一下具体的效果,如下图所示

    图片

    联系方式

    目前开通了技术交流群,群友已超过3000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友,资料获取也可以加入

    方式1、添加微信号:dkl88191,备注:来自CSDN
    方式2、微信搜索公众号:Python学习与数据挖掘,后台回复:加群
    在这里插入图片描述

  • 相关阅读:
    FutureTask配合Thread实现处理有返回结果的源码、逻辑与架构分析
    基于bp神经网络汽车自动变速器最佳挡位判断(Matlab代码实现)
    动态规划:最长公共子序列
    使用日志上下文聚合插件使能上下文查询及 Livetail
    前端设计模式和设计原则之设计模式
    【Java】static关键字,内部类
    在Uni-app中实现计时器效果
    【C++】二叉搜索树Binary Search Tree
    DDD领域驱动设计-子域
    Spring中的设计模式
  • 原文地址:https://blog.csdn.net/qq_34160248/article/details/125861462