• Day664.思考题解答⑥ -Java业务开发常见错误


    思考题解答⑥

    Hi,我是阿昌,今天的来很迟,但是虽迟但任必到,这次记录分享的关于一些问题。

    一、JDK8重要特性

    问题:对于并行流部分的并行消费处理 1 到 100 的例子,如果把 forEach 替换为 forEachOrdered,你觉得会发生什么呢?

    答:forEachOrdered 会让 parallelStream 丧失部分的并行能力,主要原因是 forEach 遍历的逻辑无法并行起来(需要按照循序遍历,无法并行)。

    比较下面的三种写法:

    //模拟消息数据需要1秒时间
    private static void consume(int i) {
        try {
            TimeUnit.SECONDS.sleep(1);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.print(i);
    }
    //模拟过滤数据需要1秒时间
    private static boolean filter(int i) {
        try {
            TimeUnit.SECONDS.sleep(1);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        return i % 2 == 0;
    }
    @Test
    public void test() {
        System.setProperty("java.util.concurrent.ForkJoinPool.common.parallelism", String.valueOf(10));
    
        StopWatch stopWatch = new StopWatch();
        stopWatch.start("stream");
        stream();
        stopWatch.stop();
        stopWatch.start("parallelStream");
        parallelStream();
        stopWatch.stop();
        stopWatch.start("parallelStreamForEachOrdered");
        parallelStreamForEachOrdered();
        stopWatch.stop();
        System.out.println(stopWatch.prettyPrint());
    }
    //filtre和forEach串行
    private void stream() {
        IntStream.rangeClosed(1, 10)
                .filter(ForEachOrderedTest::filter)
                .forEach(ForEachOrderedTest::consume);
    }
    //filter和forEach并行
    private void parallelStream() {
        IntStream.rangeClosed(1, 10).parallel()
                .filter(ForEachOrderedTest::filter)
                .forEach(ForEachOrderedTest::consume);
    }
    //filter并行而forEach串行
    private void parallelStreamForEachOrdered() {
        IntStream.rangeClosed(1, 10).parallel()
                .filter(ForEachOrderedTest::filter)
                .forEachOrdered(ForEachOrderedTest::consume);
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52

    得到输出:

    ---------------------------------------------
    ns         %     Task name
    ---------------------------------------------
    15119607359  065%  stream
    2011398298  009%  parallelStream
    6033800802  026%  parallelStreamForEachOrdered
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

    从输出中,我们可以看到:

    • stream 方法的过滤和遍历全部串行执行,总时间是 10 秒 +5 秒 =15 秒;
    • parallelStream 方法的过滤和遍历全部并行执行,总时间是 1 秒 +1 秒 =2 秒;
    • parallelStreamForEachOrdered 方法的过滤并行执行,遍历串行执行,总时间是 1 秒 +5 秒 =6 秒。

    二、Stream API

    问题 1:使用 Stream 可以非常方便地对 List 做各种操作,那有没有什么办法可以实现在整个过程中观察数据变化呢?比如,我们进行 filter+map 操作,如何观察 filter 后 map 的原始数据呢?

    答:要想观察使用 Stream 对 List 的各种操作的过程中的数据变化,主要有下面两个办法。

    第一,使用 peek 方法。比如如下代码,我们对数字 1~10 进行了两次过滤,分别是找出大于 5 的数字和找出偶数,我们通过 peek 方法把两次过滤操作之前的原始数据保存了下来:

    List<Integer> firstPeek = new ArrayList<>();
    List<Integer> secondPeek = new ArrayList<>();
    List<Integer> result = IntStream.rangeClosed(1, 10)
            .boxed()
            .peek(i -> firstPeek.add(i))
            .filter(i -> i > 5)
            .peek(i -> secondPeek.add(i))
            .filter(i -> i % 2 == 0)
            .collect(Collectors.toList());
    System.out.println("firstPeek:" + firstPeek);
    System.out.println("secondPeek:" + secondPeek);
    System.out.println("result:" + result);
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12

    最后得到输出,可以看到第一次过滤之前是数字 1~10,一次过滤后变为 6~10,最终输出 6、8、10 三个数字:

    firstPeek:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
    secondPeek:[6, 7, 8, 9, 10]
    result:[6, 8, 10]
    
    • 1
    • 2
    • 3

    第二,借助 IDEA 的 Stream 的调试功能详见这里,效果类似下图:
    在这里插入图片描述

    问题 2:Collectors 类提供了很多现成的收集器,那我们有没有办法实现自定义的收集器呢?

    比如,实现一个 MostPopularCollector,来得到 List 中出现次数最多的元素,满足下面两个测试用例:

    assertThat(Stream.of(1, 1, 2, 2, 2, 3, 4, 5, 5).collect(new MostPopularCollector<>()).get(), is(2));
    assertThat(Stream.of('a', 'b', 'c', 'c', 'c', 'd').collect(new MostPopularCollector<>()).get(), is('c'));
    
    • 1
    • 2

    答:我来说下我的实现思路和方式:通过一个 HashMap 来保存元素的出现次数,最后在收集的时候找出 Map 中出现次数最多的元素:

    public class MostPopularCollector<T> implements Collector<T, Map<T, Integer>, Optional<T>> {
        //使用HashMap保存中间数据
        @Override
        public Supplier<Map<T, Integer>> supplier() {
            return HashMap::new;
        }
        //每次累积数据则累加Value
        @Override
        public BiConsumer<Map<T, Integer>, T> accumulator() {
            return (acc, elem) -> acc.merge(elem, 1, (old, value) -> old + value);
        }
        //合并多个Map就是合并其Value
        @Override
        public BinaryOperator<Map<T, Integer>> combiner() {
            return (a, b) -> Stream.concat(a.entrySet().stream(), b.entrySet().stream())
                    .collect(Collectors.groupingBy(Map.Entry::getKey, summingInt(Map.Entry::getValue)));
        }
        //找出Map中Value最大的Key
        @Override
        public Function<Map<T, Integer>, Optional<T>> finisher() {
            return (acc) -> acc.entrySet().stream()
                    .reduce(BinaryOperator.maxBy(Map.Entry.comparingByValue()))
                    .map(Map.Entry::getKey);
        }
    
        @Override
        public Set<Characteristics> characteristics() {
            return Collections.emptySet();
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30

    三、定位排查应用问题

    问题:如果你现在打开一个 App 后发现首页展示了一片空白,那这到底是客户端兼容性的问题,还是服务端的问题呢?如果是服务端的问题,又如何进一步细化定位呢?你有什么分析思路吗?

    答:首先,我们需要区分客户端还是服务端错误。我们可以先从客户端下手,排查看看是否是服务端问题,也就是通过抓包来看服务端的返回(一般而言客户端发布之前会经过测试,而且无法随时变更,所以服务端出错的可能性会更大一点)。

    因为一个客户端程序可能对应几百个服务端接口,先从客户端(发出请求的根源)开始排查问题,更容易找到方向。

    服务端没有返回正确的输出,那么就需要继续排查服务端接口或是上层的负载均衡了,排查方式为:

    • 查看负载均衡(比如 Nginx)的日志;
    • 查看服务端日志;
    • 查看服务端监控。

    如果服务端返回了正确的输出,那么要么是由于客户端的 Bug,要么就是外部配置等问题了,排查方式为:

    • 查看客户端报错(一般而言,客户端都会对接 SAAS 的异常服务);
    • 直接本地启动客户端调试。

    四、分析定位Java问题工具①

    问题 1:JDK 中还有一个 jmap 工具,我们会使用 jmap -dump 命令来进行堆转储。那么,这条命令和 jmap -dump:live 有什么区别呢?你能否设计一个实验,来证明下它们的区别呢?

    答:jmap -dump 命令是转储堆中的所有对象,而 jmap -dump:live 是转储堆中所有活着的对象。

    因为,jmap -dump:live 会触发一次 FullGC。

    写一个程序测试一下:

    @SpringBootApplication
    @Slf4j
    public class JMapApplication implements CommandLineRunner {
    
        //-Xmx512m -Xms512m
        public static void main(String[] args) {
            SpringApplication.run(JMapApplication.class, args);
        }
        @Override
        public void run(String... args) throws Exception {
            while (true) {
                //模拟产生字符串,每次循环后这个字符串就会失去引用可以GC
                String payload = IntStream.rangeClosed(1, 1000000)
                        .mapToObj(__ -> "a")
                        .collect(Collectors.joining("")) + UUID.randomUUID().toString();
                log.debug(payload);
                TimeUnit.MILLISECONDS.sleep(1);
            }
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20

    然后,使用 jmap 不带和带 live 分别生成两个转储:

    jmap -dump:format=b,file=nolive.hprof 57323
    jmap -dump:live,format=b,file=live.hprof 5732
    
    • 1
    • 2

    可以看到,nolive 这个转储的不可到达对象包含了 164MB char[](可以认为基本是字符串):
    在这里插入图片描述
    而 live 这个转储只有 1.3MB 的 char[],说明程序循环中的这些字符串都被 GC 了:
    在这里插入图片描述

    问题 2:你有没有想过,客户端是如何和 MySQL 进行认证的呢?你能否对照MySQL 的文档,使用 Wireshark 观察分析这一过程呢?

    答:一般而言,认证(握手)过程分为三步。首先,服务端给客户端主动发送握手消息:

    在这里插入图片描述

    Wireshark 已经把消息的字段做了解析,你可以对比官方文档的协议格式一起查看。HandshakeV10 消息体的第一个字节是消息版本 0a,见图中红色框标注的部分。前面四个字节是 MySQL 的消息头,其中前三个字节是消息体长度(16 进制 4a=74 字节),最后一个字节是消息序列号。

    然后,客户端给服务端回复的 HandshakeResponse41 消息体,包含了登录的用户名和密码:
    在这里插入图片描述
    可以看到,用户名是 string[NUL]类型的,说明字符串以 00 结尾代表字符串结束。关于 MySQL 协议中的字段类型,你可以参考这里

    最后,服务端回复的 OK 消息,代表握手成功:

    在这里插入图片描述

    发现使用 Wireshark 观察客户端和 MySQL 的认证过程,非常方便。

    而如果不借助 Wireshark 工具,我们只能一个字节一个字节地对照协议文档分析内容。

    其实,各种 CS 系统定义的通讯协议本身并不深奥,甚至可以说对着协议文档写通讯客户端是体力活。你可以继续按照这里我说的方式,结合抓包和文档,分析一下 MySQL 的查询协议。


    五、大佬学习经验分享

    问题:Arthas 还有一个强大的热修复功能。比如,遇到高 CPU 问题时,我们定位出是管理员用户会执行很多次 MD5,消耗大量 CPU 资源。这时,我们可以直接在服务器上进行热修复,步骤是:jad 命令反编译代码 -> 使用文本编辑器(比如 Vim)直接修改代码 -> 使用 sc 命令查找代码所在类的 ClassLoader-> 使用 redefine 命令热更新代码。你可以尝试使用这个流程,直接修复程序(注释 doTask 方法中的相关代码)吗?

    答:Arthas 的官方文档有详细的操作步骤,实现 jad->sc->redefine 的整个流程,需要注意的是:

    • redefine 命令和 jad/watch/trace/monitor/tt 等命令会冲突。执行完 redefine 之后,如果再执行上面提到的命令,则会把 redefine 的字节码重置。 原因是,JDK 本身 redefine 和 Retransform 是不同的机制,同时使用两种机制来更新字节码,只有最后的修改会生效。
    • 使用 redefine 不允许新增或者删除 field/method,并且运行中的方法不会立即生效,需要等下次运行才能生效。
  • 相关阅读:
    09.webpack5搭建vue环境(三)
    元气森林推“有矿”,农夫山泉们跟着“卷”?
    Windows无法访问指定设备、路径或文件怎么办?
    Vue ElementUi 校验邮箱手机号--大全
    【环境搭建】linux docker-compose安装mysql5.7
    k8s的pod内部打包工程镜像
    随机森林底层代码(多颗决策树)
    计算机设计大赛 题目:基于机器视觉opencv的手势检测 手势识别 算法 - 深度学习 卷积神经网络 opencv python
    有了这45个小技巧,再也不怕女朋友代码写得烂了!!
    JAVA:实现检查字符串是否为 pangram 字符串算法(附完整源码)
  • 原文地址:https://blog.csdn.net/qq_43284469/article/details/125567447