在本教程中,我们将学习如何使用pcl::MinCutSegmentation类中实现的基于最小切的分割算法。该算法对给定的输入云进行二进制分割。根据对象中心及其半径,该算法将点云划分为两组:前景点和背景点(属于对象的点和不属于对象的点)。

源码:
创建 min_cut_segmentation.cpp 文件
- 1#include <iostream>
- 2#include <vector>
- 3#include <pcl/io/pcd_io.h>
- 4#include <pcl/point_types.h>
- 5#include <pcl/visualization/cloud_viewer.h>
- 6#include <pcl/filters/filter_indices.h> // for pcl::removeNaNFromPointCloud
- 7#include <pcl/segmentation/min_cut_segmentation.h>
- 8
- 9int main ()
- 10{
- 11 pcl::PointCloud <pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud <pcl::PointXYZ>);
- 12 if ( pcl::io::loadPCDFile <pcl::PointXYZ> ("min_cut_segmentation_tutorial.pcd", *cloud) == -1 )
- 13 {
- 14 std::cout << "Cloud reading failed." << std::endl;
- 15 return (-1);
- 16 }
- 17
- 18 pcl::IndicesPtr indices (new std::vector <int>);
- 19 pcl::removeNaNFromPointCloud(*cloud, *indices);
- 20
- 21 pcl::MinCutSegmentation<pcl::PointXYZ> seg;
- 22 seg.setInputCloud (cloud);
- 23 seg.setIndices (indices);
- 24
- 25 pcl::PointCloud<pcl::PointXYZ>::Ptr foreground_points(new pcl::PointCloud<pcl::PointXYZ> ());
- 26 pcl::PointXYZ point;
- 27 point.x = 68.97;
- 28 point.y = -18.55;
- 29 point.z = 0.57;
- 30 foreground_points->points.push_back(point);
- 31 seg.setForegroundPoints (foreground_points);
- 32
- 33 seg.setSigma (0.25);
- 34 seg.setRadius (3.0433856);
- 35 seg.setNumberOfNeighbours (14);
- 36 seg.setSourceWeight (0.8);
- 37
- 38 std::vector <pcl::PointIndices> clusters;
- 39 seg.extract (clusters);
- 40
- 41 std::cout << "Maximum flow is " << seg.getMaxFlow () << std::endl;
- 42
- 43 pcl::PointCloud <pcl::PointXYZRGB>::Ptr colored_cloud = seg.getColoredCloud ();
- 44 pcl::visualization::CloudViewer viewer ("Cluster viewer");
- 45 viewer.showCloud(colored_cloud);
- 46 while (!viewer.wasStopped ())
- 47 {
- 48 }
- 49
- 50 return (0);
- 51}
说明:
1、相关头文件
- 1#include <iostream>
- 2#include <vector>
- 3#include <pcl/io/pcd_io.h>
- 4#include <pcl/point_types.h>
- 5#include <pcl/visualization/cloud_viewer.h>
- 6#include <pcl/filters/filter_indices.h> // for pcl::removeNaNFromPointCloud
- 7#include <pcl/segmentation/min_cut_segmentation.h>
2、从 .pcd 文件加载点云。
- pcl::PointCloud <pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud <pcl::PointXYZ>);
- if ( pcl::io::loadPCDFile <pcl::PointXYZ> ("min_cut_segmentation_tutorial.pcd", *cloud) == -1 )
- {
- std::cout << "Cloud reading failed." << std::endl;
- return (-1);
- }
3、表明pcl::MinCutSegmentation类可以使用索引。这里,只选择有效点进行分割。
- pcl::IndicesPtr indices (new std::vector <int>);
- pcl::removeNaNFromPointCloud(*cloud, *indices);
4、pcl::MinCutSegmentation类实例化。模板类只有一个参数 - PointT - 说明将使用哪种类型的点。
pcl::MinCutSegmentation<pcl::PointXYZ> seg;
5、提供了必须分割的点云和索引。
- seg.setInputCloud (cloud);
- seg.setIndices (indices);
6、算法需要已知为对象中心的点。这些行提供了它。
- pcl::PointCloud<pcl::PointXYZ>::Ptr foreground_points(new pcl::PointCloud<pcl::PointXYZ> ());
- pcl::PointXYZ point;
- point.x = 68.97;
- point.y = -18.55;
- point.z = 0.57;
- foreground_points->points.push_back(point);
- seg.setForegroundPoints (foreground_points);
7、设置平滑成本计算所需的
和对象半径。
- seg.setSigma (0.25);
- seg.setRadius (3.0433856);
8、表示在构造图时要找到多少邻居。设置的邻居越多,它包含的边数就越多。
seg.setNumberOfNeighbours (14);
9、设置前景惩罚
seg.setSourceWeight (0.8);
10、启动算法,分割后的簇将包含结果
- std::vector <pcl::PointIndices> clusters;
- seg.extract (clusters);
11、访问在图形切割期间计算的流量值
std::cout << "Maximum flow is " << seg.getMaxFlow () << std::endl;
12、创建 CloudViewer 类的实例以实现结果可视化。
- pcl::PointCloud <pcl::PointXYZRGB>::Ptr colored_cloud = seg.getColoredCloud ();
- pcl::visualization::CloudViewer viewer ("Cluster viewer");
- viewer.showCloud(colored_cloud);
- while (!viewer.wasStopped ())
- {
- }
编译和运行
1、在 CMakeLists.txt 文件中添加以下代码行:
- 1cmake_minimum_required(VERSION 3.5 FATAL_ERROR)
- 2
- 3project(min_cut_segmentation)
- 4
- 5find_package(PCL 1.5 REQUIRED)
- 6
- 7include_directories(${PCL_INCLUDE_DIRS})
- 8link_directories(${PCL_LIBRARY_DIRS})
- 9add_definitions(${PCL_DEFINITIONS})
- 10
- 11add_executable (min_cut_segmentation min_cut_segmentation.cpp)
- 12target_link_libraries (min_cut_segmentation ${PCL_LIBRARIES})
2、运行
$ ./min_cut_segmentation
3、输出
