https://mydreamambitious.blog.csdn.net/article/details/124851743

import os
import cv2
import dlib
import numpy as np
from collections import OrderedDict
#对于68个检测点,将人脸的几个关键点排列成有序,便于后面的遍历
shape_predictor_68_face_landmark=OrderedDict([
('mouth',(48,68)),
('right_eyebrow',(17,22)),
('left_eye_brow',(22,27)),
('right_eye',(36,42)),
('left_eye',(42,48)),
('nose',(27,36)),
('jaw',(0,17))
])
# 加载人脸检测与关键点定位
#http://dlib.net/python/index.html#dlib_pybind11.get_frontal_face_detector
detector = dlib.get_frontal_face_detector()
#http://dlib.net/python/index.html#dlib_pybind11.shape_predictor
criticPoints = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
#绘制人脸画矩形框
def drawRectangle(detected,frame):
margin = 0.2
img_h,img_w,_=np.shape(frame)
if len(detected) > 0:
for i, locate in enumerate(detected):
x1, y1, x2, y2, w, h = locate.left(), locate.top(), locate.right() + 1, locate.bottom() + 1, locate.width(), locate.height()
xw1 = max(int(x1 - margin * w), 0)
yw1 = max(int(y1 - margin * h), 0)
xw2 = min(int(x2 + margin * w), img_w - 1)
yw2 = min(int(y2 + margin * h), img_h - 1)
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
face = frame[yw1:yw2 + 1, xw1:xw2 + 1, :]
cv2.putText(frame, 'Person', (locate.left(), locate.top() - 10),
cv2.FONT_HERSHEY_SIMPLEX, 1.2, (255, 0, 0), 3)
return frame
#对检测之后获取的人脸关键点坐标进行转换
def predict2Np(predict):
# 创建68*2关键点的二维空数组[(x1,y1),(x2,y2)……]
dims=np.zeros(shape=(predict.num_parts,2),dtype=np.int)
#遍历人脸的每个关键点获取二维坐标
length=predict.num_parts
for i in range(0,length):
dims[i]=(predict.part(i).x,predict.part(i).y)
return dims
#遍历预测框,进行人脸的关键点绘制
def drawCriticPoints(detected,frame):
for (step,locate) in enumerate(detected):
#对获取的人脸框再进行人脸关键点检测
#获取68个关键点的坐标值
dims=criticPoints(frame,locate)
#将得到的坐标值转换为二维
dims=predict2Np(dims)
#通过得到的关键点坐标进行关键点绘制
# 从i->j这个范围内的都是同一个区域:比如上面的鼻子就是从27->36
for (name,(i,j)) in shape_predictor_68_face_landmark.items():
#对每个部位进行绘点
for (x,y) in dims[i:j]:
cv2.circle(img=frame,center=(x,y),
radius=2,color=(0,255,0),thickness=-1)
return frame
import os
import cv2
import dlib
import numpy as np
from collections import OrderedDict
#https://mydreamambitious.blog.csdn.net/article/details/123535760
#对于68个检测点,将人脸的几个关键点排列成有序,便于后面的遍历
shape_predictor_68_face_landmark=OrderedDict([
('mouth',(48,68)),
('right_eyebrow',(17,22)),
('left_eye_brow',(22,27)),
('right_eye',(36,42)),
('left_eye',(42,48)),
('nose',(27,36)),
('jaw',(0,17))
])
#绘制人脸画矩形框
def drawRectangle(detected,frame):
margin = 0.2
img_h,img_w,_=np.shape(frame)
if len(detected) > 0:
for i, locate in enumerate(detected):
x1, y1, x2, y2, w, h = locate.left(), locate.top(), locate.right() + 1, locate.bottom() + 1, locate.width(), locate.height()
xw1 = max(int(x1 - margin * w), 0)
yw1 = max(int(y1 - margin * h), 0)
xw2 = min(int(x2 + margin * w), img_w - 1)
yw2 = min(int(y2 + margin * h), img_h - 1)
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
face = frame[yw1:yw2 + 1, xw1:xw2 + 1, :]
cv2.putText(frame, 'Person', (locate.left(), locate.top() - 10),
cv2.FONT_HERSHEY_SIMPLEX, 1.2, (255, 0, 0), 3)
return frame
#对检测之后获取的人脸关键点坐标进行转换
def predict2Np(predict):
# 创建68*2关键点的二维空数组[(x1,y1),(x2,y2)……]
dims=np.zeros(shape=(predict.num_parts,2),dtype=np.int)
#遍历人脸的每个关键点获取二维坐标
length=predict.num_parts
for i in range(0,length):
dims[i]=(predict.part(i).x,predict.part(i).y)
return dims
# 加载人脸检测与关键点定位
#http://dlib.net/python/index.html#dlib_pybind11.get_frontal_face_detector
detector = dlib.get_frontal_face_detector()
#http://dlib.net/python/index.html#dlib_pybind11.shape_predictor
criticPoints = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
#遍历预测框,进行人脸的关键点绘制
def drawCriticPoints(detected,frame):
for (step,locate) in enumerate(detected):
#对获取的人脸框再进行人脸关键点检测
#获取68个关键点的坐标值
dims=criticPoints(frame,locate)
#将得到的坐标值转换为二维
dims=predict2Np(dims)
#通过得到的关键点坐标进行关键点绘制
# 从i->j这个范围内的都是同一个区域:比如上面的鼻子就是从27->36
for (name,(i,j)) in shape_predictor_68_face_landmark.items():
#对每个部位进行绘点
for (x,y) in dims[i:j]:
cv2.circle(img=frame,center=(x,y),
radius=2,color=(0,255,0),thickness=-1)
return frame
#单张图片的人脸关键点检测
def signal_detect(img_path='images/face1.jpg'):
img=cv2.imread(img_path)
detected=detector(img)
frame=drawRectangle(detected,img)
frame = drawCriticPoints(detected, img)
cv2.imshow('frame',frame)
cv2.waitKey(0)
cv2.destroyAllWindows()
#实时的人脸关键点检测
def detect_time():
cap=cv2.VideoCapture(0)
while cap.isOpened():
ret,frame=cap.read()
detected = detector(frame)
frame = drawRectangle(detected, frame)
frame=drawCriticPoints(detected,frame)
cv2.imshow('frame', frame)
key=cv2.waitKey(1)
if key==27:
break
cap.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
print('Pycharm')
signal_detect()
# detect_time()

注:实时检测部分读者可以自己测试。