• 【电气介数】电气介数及考虑HVDC和FACTS元件的电气介数计算


    1.软件版本

    matlab2013b

    2.系统概述

    1.支路电气介数计算

    支路m-n的电气介数计算式如下:

     2.节点电气介数计算

    节点k的电气介数计算式如下:

     

     其中,F(k)为与节点k连接的边的集合。

    需要对测试系统得出支路和节点电气介数的计算值和分布情况。

    参考所附文献《含HVDC和FACTS元件的电气介数计算第一部分》、《含HVDC和FACTS元件的电气介数计算第二部分》计算方法。潮流模型采用直流潮流模型即可。

    HVDC、FACTS(包含TCSC和UPFC)三种简化模型在电气介数计算中的体现形式为:对测试系统,可以在系统任意数量和位置的线路上对以上三种简化模型进行选择。得出考虑三种模型后的系统中支路和节点的电气介数计算值和分布情况。

            根据论文中提供的电气介数的计算流程:

    步骤一:对网络进行简化,获得电网拓扑结构模型;

    步骤二:连通性分析,使用图论中的连通性分析算法对整个网络进行划分为不同的区;

    步骤三:计算各个不同区的导纳矩阵;

    步骤四:选择一对在同一区域的发电负荷节点,并注入有功功率,然后计算潮流,并保证所有的发电负荷阶段均被选择;

    步骤五:计算线路和节点的电气介数;

    步骤六:计算其对应的累积分别;

    3.部分源码

    1. clc;
    2. clear;
    3. close all;
    4. warning off;
    5. addpath 'func\'
    6. RandStream.setDefaultStream(RandStream('mt19937ar','seed',1));
    7. mpc = case118;
    8. %节点数的初始化
    9. BUS = mpc.bus;
    10. GEN = mpc.gen;
    11. BRANCH = mpc.branch;
    12. [r,c] = size(mpc.bus); %r为节点数量
    13. Bus_Num = r;
    14. [r,c] = size(mpc.branch);%r为支路数量
    15. F_Num = r;
    16. %步骤1:显示网络拓扑结构
    17. [Connect,Cmatrix] = func_topology(BRANCH,BUS(end,1),0);
    18. %步骤2:连通性分析,使用图论中的连通性分析算法对整个网络进行划分为不同的区
    19. [S,Q] = func_Adjacent_matrix(Cmatrix);
    20. %步骤3:计算各个不同区的导纳矩阵
    21. Ak = func_Admittance_matrix_different_area(BUS,BRANCH,S,Q);
    22. %步骤4:选择一对在同一区域的发电负荷节点,并注入有功功率,然后计算潮流,并保证所有的发电负荷阶段均被选择;
    23. Fo = func_Lb_flow(Ak,BUS,GEN,Bus_Num,Connect,S,Q);
    24. %步骤5:计算线路的电气介数
    25. disp('线路电气介数:');
    26. func_Line_JS(mpc,Fo,BRANCH,BUS,GEN,S,Bus_Num);
    27. title('线路电气介数');
    28. %步骤6:计算节点的电气介数
    29. disp('节点电气介数:');
    30. func_Node_JS(mpc,Fo,BRANCH,BUS,GEN,S,Bus_Num);
    31. title('节点电气介数');
    32. %步骤7:计算节点的度数
    33. disp('节点的度数:');
    34. func_Node_degree(BUS,BRANCH);
    1. function Ak = func_Admittance_matrix(bus,line);
    2. [nb,mb] = size(bus);
    3. [nl,ml] = size(line);
    4. %对导纳矩阵赋初值0
    5. Ak = zeros(nl,nb);
    6. for k=1:nl
    7. I = line(k,1);
    8. J = line(k,2);
    9. Zt = line(k,3)+j*line(k,4);
    10. Yt = 1/Zt;
    11. Ym = line(k,5)+j*line(k,10);
    12. K = line(k,9);
    13. %普通线路
    14. if (K==0) & (J~=0)
    15. Ak(I,I) = Ak(I,I) + Yt + Ym;
    16. Ak(J,J) = Ak(J,J) + Yt + Ym;
    17. Ak(I,J) = Ak(I,J) - Yt;
    18. Ak(J,I) = Ak(I,J);
    19. end
    20. %对地支路
    21. if (K==0)&(J==0)
    22. Ak(I,I) = Ak(I,I) + Ym;
    23. end
    24. %变压器线路
    25. if K > 0
    26. Ak(I,I) = Ak(I,I) + Yt + Ym;
    27. Ak(J,J) = Ak(J,J) + Yt / K / K;
    28. Ak(I,J) = Ak(I,J) - Yt / K;
    29. Ak(J,I) = Ak(I,J);
    30. end
    31. %变压器线路
    32. if K < 0
    33. Ak(I,I) = Ak(I,I) + Yt + Ym;
    34. Ak(J,J) = Ak(J,J) + K*K*Yt;
    35. Ak(I,J) = Ak(I,J) + K*Yt;
    36. Ak(J,I) = Ak(I,J);
    37. end
    38. end
    39. a = [nb+1:nl];
    40. T = length([nb+1:nl]);
    41. for ii = 1:T
    42. Ak(nb+ii,:) = Ak(line(a(ii),1),:);
    43. end
    44. [rr,cc] = size(Ak);
    45. for ii = 1:rr
    46. for jj = 1:cc
    47. if abs(Ak(ii,jj)) > 100000
    48. Ak(ii,jj) = 0;
    49. end
    50. end
    51. end

    4.仿真结论

           这里,系统的拓扑构架如下所示:

    最后我们计算得到的节点度和节点介数以及边介数的仿真结果图如下所示:

     线路介数:

     异质性值为:0.739。

    节点介数:

    异质性值为:0.7796

    度数:

            这里首先简单的介绍一下HVDC的说明,根据我们这个博士论文中的说明:

            HVDC模型,主要是在仿真的时候,我们需要在原来的系统中选择一个起点m和终点n,然后分别对m和n注入功率pacr和paci。然后再进行后面的计算。

    线路介数:

     

     异质性值为:0.7133。

    节点介数:

     异质性值为:0.7797

    度数:

     

           TCSC的主要区别,就是选择两个母线l和p,然后分别注入Pip和Ppl功率,其中,在l和m之间,需要增加节点P,然后参与后面的计算。

    线路介数:

     异质性值为:0. 7390。

    节点介数:

     异质性值为:0. 7796

    度数:

     

          UPFC的主要区别,就是选择两个母线l和p,然后分别注入Pip和Ppl功率,他和TCSC的最大区别在于,在l和m之间,不需要增加节点P,然后参与后面的计算,其余计算都类似。

    线路介数:

     

    异质性值为:0.7390

    节点介数:

     异质性值为:0.7796

    度数:

     A02-22

  • 相关阅读:
    【eBPF-01】初见:基于 BCC 框架的第一个 eBPF 程序
    【多条件筛选】js简单实现多条件过滤数组对象,返回新的数组
    7-6 静静的推荐
    麒麟810芯片的手机在编程方面有哪些特点
    pg14-sql基础(二)-排序与统计
    Java-API简析_java.util.Properties类(基于 Latest JDK)(浅析源码)
    ansible unarchive 模块
    C陷阱与缺陷 第7章 可移植性缺陷 7.11 可移植性问题的一个例子
    AERMOD模型在大气环境影响评价中的应用
    基于NodeJs+Express+Mysql学生社团活动管理系统
  • 原文地址:https://blog.csdn.net/ccsss22/article/details/125547496