• Python Basics with Numpy(吴恩达课程)


    Python Basics with Numpy(吴恩达课程)

    # (≈ 1 line of code)
    # test = 
    # YOUR CODE STARTS HERE
    print ("test: " + test)
    
    # YOUR CODE ENDS HERE
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    import math
    from public_tests import *
    
    # GRADED FUNCTION: basic_sigmoid
    
    def basic_sigmoid(x):
        """
        Compute sigmoid of x.
    
        Arguments:
        x -- A scalar
    
        Return:
        s -- sigmoid(x)
        """
        # (≈ 1 line of code)
        # s = 
        # YOUR CODE STARTS HERE
        s = 1 / (1 + math.exp(-x))
        
        # YOUR CODE ENDS HERE
        
        return s
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    # GRADED FUNCTION: sigmoid
    
    def sigmoid(x):
        """
        Compute the sigmoid of x
    
        Arguments:
        x -- A scalar or numpy array of any size
    
        Return:
        s -- sigmoid(x)
        """
        
        # (≈ 1 line of code)
        # s = 
        # YOUR CODE STARTS HERE
        s = 1 / (1 + np.exp(-x))
        
        # YOUR CODE ENDS HERE
        
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    # GRADED FUNCTION: sigmoid_derivative
    
    def sigmoid_derivative(x):
        """
        Compute the gradient (also called the slope or derivative) of the sigmoid function with respect to its input x.
        You can store the output of the sigmoid function into variables and then use it to calculate the gradient.
        
        Arguments:
        x -- A scalar or numpy array
    
        Return:
        ds -- Your computed gradient.
        """
        
        #(≈ 2 lines of code)
        # s = 
        # ds = 
        # YOUR CODE STARTS HERE
        s = 1 / (1 + np.exp(-x))
        ds = s * (1 - s)
        
        # YOUR CODE ENDS HERE
        
        return ds
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    # GRADED FUNCTION:image2vector
    
    def image2vector(image):
        """
        Argument:
        image -- a numpy array of shape (length, height, depth)
        
        Returns:
        v -- a vector of shape (length*height*depth, 1)
        """
        
        # (≈ 1 line of code)
        # v =
        # YOUR CODE STARTS HERE
        v = image.reshape((image.shape[0] * image.shape[1] * image.shape[2],1))
    
        
        # YOUR CODE ENDS HERE
        
        return v
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    # GRADED FUNCTION: normalize_rows
    
    def normalize_rows(x):
        """
        Implement a function that normalizes each row of the matrix x (to have unit length).
        
        Argument:
        x -- A numpy matrix of shape (n, m)
        
        Returns:
        x -- The normalized (by row) numpy matrix. You are allowed to modify x.
        """
        
        #(≈ 2 lines of code)
        # Compute x_norm as the norm 2 of x. Use np.linalg.norm(..., ord = 2, axis = ..., keepdims = True)
        # x_norm =
        # Divide x by its norm.
        # x =
        # YOUR CODE STARTS HERE
        x_norm = np.linalg.norm(x,ord = 2,axis = 1,keepdims = True)
    
        x = x / x_norm
        # YOUR CODE ENDS HERE
    
        return x
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    # GRADED FUNCTION: softmax
    
    def softmax(x):
        """Calculates the softmax for each row of the input x.
    
        Your code should work for a row vector and also for matrices of shape (m,n).
    
        Argument:
        x -- A numpy matrix of shape (m,n)
    
        Returns:
        s -- A numpy matrix equal to the softmax of x, of shape (m,n)
        """
        
        #(≈ 3 lines of code)
        # Apply exp() element-wise to x. Use np.exp(...).
        # x_exp = ...
    
        # Create a vector x_sum that sums each row of x_exp. Use np.sum(..., axis = 1, keepdims = True).
        # x_sum = ...
        
        # Compute softmax(x) by dividing x_exp by x_sum. It should automatically use numpy broadcasting.
        # s = ...
        
        # YOUR CODE STARTS HERE
        x_exp = np.exp(x)
        x_sum = np.sum(x_exp,axis = 1,keepdims = True)
        s = x_exp / x_sum
        # YOUR CODE ENDS HERE
        
        return s
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    # GRADED FUNCTION: L1
    
    def L1(yhat, y):
        """
        Arguments:
        yhat -- vector of size m (predicted labels)
        y -- vector of size m (true labels)
        
        Returns:
        loss -- the value of the L1 loss function defined above
        """
        
        #(≈ 1 line of code)
        # loss = 
        # YOUR CODE STARTS HERE
        loss = np.sum(np.abs(yhat-y),axis = 0)
        
        # YOUR CODE ENDS HERE
        
        return loss
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    # GRADED FUNCTION: L2
    
    def L2(yhat, y):
        """
        Arguments:
        yhat -- vector of size m (predicted labels)
        y -- vector of size m (true labels)
        
        Returns:
        loss -- the value of the L2 loss function defined above
        """
        
        #(≈ 1 line of code)
        # loss = ...
        # YOUR CODE STARTS HERE
        loss = np.dot(np.abs(yhat-y),np.abs(yhat-y))
        
        # YOUR CODE ENDS HERE
        
        return loss
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
  • 相关阅读:
    python常用进制转换
    基于Java Swing和BouncyCastle的证书生成工具
    Llama-7b-Chinese本地推理
    什么是日本PSE
    buuctf web [极客大挑战 2019]Http
    Java基础11——抽象类和接口
    第三章:人工智能深度学习教程-基础神经网络(第五节-了解多层前馈网络)
    ElasticSearch(二):ES集群安装
    C语言----结构体
    RabbitMQ和Minio实现头像存储
  • 原文地址:https://blog.csdn.net/weixin_43456810/article/details/125527787