• Python Basics with Numpy(吴恩达课程)


    Python Basics with Numpy(吴恩达课程)

    # (≈ 1 line of code)
    # test = 
    # YOUR CODE STARTS HERE
    print ("test: " + test)
    
    # YOUR CODE ENDS HERE
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    import math
    from public_tests import *
    
    # GRADED FUNCTION: basic_sigmoid
    
    def basic_sigmoid(x):
        """
        Compute sigmoid of x.
    
        Arguments:
        x -- A scalar
    
        Return:
        s -- sigmoid(x)
        """
        # (≈ 1 line of code)
        # s = 
        # YOUR CODE STARTS HERE
        s = 1 / (1 + math.exp(-x))
        
        # YOUR CODE ENDS HERE
        
        return s
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    # GRADED FUNCTION: sigmoid
    
    def sigmoid(x):
        """
        Compute the sigmoid of x
    
        Arguments:
        x -- A scalar or numpy array of any size
    
        Return:
        s -- sigmoid(x)
        """
        
        # (≈ 1 line of code)
        # s = 
        # YOUR CODE STARTS HERE
        s = 1 / (1 + np.exp(-x))
        
        # YOUR CODE ENDS HERE
        
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    # GRADED FUNCTION: sigmoid_derivative
    
    def sigmoid_derivative(x):
        """
        Compute the gradient (also called the slope or derivative) of the sigmoid function with respect to its input x.
        You can store the output of the sigmoid function into variables and then use it to calculate the gradient.
        
        Arguments:
        x -- A scalar or numpy array
    
        Return:
        ds -- Your computed gradient.
        """
        
        #(≈ 2 lines of code)
        # s = 
        # ds = 
        # YOUR CODE STARTS HERE
        s = 1 / (1 + np.exp(-x))
        ds = s * (1 - s)
        
        # YOUR CODE ENDS HERE
        
        return ds
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    # GRADED FUNCTION:image2vector
    
    def image2vector(image):
        """
        Argument:
        image -- a numpy array of shape (length, height, depth)
        
        Returns:
        v -- a vector of shape (length*height*depth, 1)
        """
        
        # (≈ 1 line of code)
        # v =
        # YOUR CODE STARTS HERE
        v = image.reshape((image.shape[0] * image.shape[1] * image.shape[2],1))
    
        
        # YOUR CODE ENDS HERE
        
        return v
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    # GRADED FUNCTION: normalize_rows
    
    def normalize_rows(x):
        """
        Implement a function that normalizes each row of the matrix x (to have unit length).
        
        Argument:
        x -- A numpy matrix of shape (n, m)
        
        Returns:
        x -- The normalized (by row) numpy matrix. You are allowed to modify x.
        """
        
        #(≈ 2 lines of code)
        # Compute x_norm as the norm 2 of x. Use np.linalg.norm(..., ord = 2, axis = ..., keepdims = True)
        # x_norm =
        # Divide x by its norm.
        # x =
        # YOUR CODE STARTS HERE
        x_norm = np.linalg.norm(x,ord = 2,axis = 1,keepdims = True)
    
        x = x / x_norm
        # YOUR CODE ENDS HERE
    
        return x
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    # GRADED FUNCTION: softmax
    
    def softmax(x):
        """Calculates the softmax for each row of the input x.
    
        Your code should work for a row vector and also for matrices of shape (m,n).
    
        Argument:
        x -- A numpy matrix of shape (m,n)
    
        Returns:
        s -- A numpy matrix equal to the softmax of x, of shape (m,n)
        """
        
        #(≈ 3 lines of code)
        # Apply exp() element-wise to x. Use np.exp(...).
        # x_exp = ...
    
        # Create a vector x_sum that sums each row of x_exp. Use np.sum(..., axis = 1, keepdims = True).
        # x_sum = ...
        
        # Compute softmax(x) by dividing x_exp by x_sum. It should automatically use numpy broadcasting.
        # s = ...
        
        # YOUR CODE STARTS HERE
        x_exp = np.exp(x)
        x_sum = np.sum(x_exp,axis = 1,keepdims = True)
        s = x_exp / x_sum
        # YOUR CODE ENDS HERE
        
        return s
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    # GRADED FUNCTION: L1
    
    def L1(yhat, y):
        """
        Arguments:
        yhat -- vector of size m (predicted labels)
        y -- vector of size m (true labels)
        
        Returns:
        loss -- the value of the L1 loss function defined above
        """
        
        #(≈ 1 line of code)
        # loss = 
        # YOUR CODE STARTS HERE
        loss = np.sum(np.abs(yhat-y),axis = 0)
        
        # YOUR CODE ENDS HERE
        
        return loss
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    # GRADED FUNCTION: L2
    
    def L2(yhat, y):
        """
        Arguments:
        yhat -- vector of size m (predicted labels)
        y -- vector of size m (true labels)
        
        Returns:
        loss -- the value of the L2 loss function defined above
        """
        
        #(≈ 1 line of code)
        # loss = ...
        # YOUR CODE STARTS HERE
        loss = np.dot(np.abs(yhat-y),np.abs(yhat-y))
        
        # YOUR CODE ENDS HERE
        
        return loss
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
  • 相关阅读:
    你读过哪些让你醍醐灌顶的 Java 代码?
    【PDN仿真笔记4-电容布局仿真及结果分析】
    docker使用记录1:构建java、python、c++环境镜像
    Python可视化招聘信息聚合系统 (附源码)!
    我献出这篇 go 精华总结,阁下该如何应对
    FPGA SPI采集ADC7606数据
    SpringMVC之自定义注解
    滴滴-小桔充电
    golang map 初始化 和 使用
    算力时代,算能(SOPHGO)的算力芯片/智算板卡/服务器选型
  • 原文地址:https://blog.csdn.net/weixin_43456810/article/details/125527787