• Yolov5网络修改教程(将backbone修改为EfficientNet、MobileNet3、RegNet等)


    在我的本科毕业论文中,我使用了Yolov5,并尝试对其更改。可以对Yolov5进行一定程度的定制化修改,例如更轻量级的Yolov5-MobileNetv3 或者比Yolov5s更好的(存疑,没有跑过大数据集,可自己实验)Yolov5-EfficientNet。

    首先在修改之前,先看Yolov5的网络结构。整体看起来很复杂,但是不用慌张,本篇文章的主要修改处Backbone(特征提取网络)可以抽象为只有三部分,也就是只需要修改这一处地方即可。
    在这里插入图片描述
    然后了解我们需要修改的代码。需要修改代码主要集中在yolov5的model文件夹下。yaml主要是修改代码后相对应的配置文件。common.py中添加新的模块,yolo.py中则是让模型能够支持读取相应的配置文件。
    在这里插入图片描述
    前情介绍完毕。下面正式开始进行模型修改,第一步是选择一些性能比较好的特征提取网络,比如前文提到的MobileNet、EfficientNet等。其实表现的比较好的特征提取网络,大部分都经过三次及以上的下采样,能够得到三种不同大小的特征图。在Yolov5中会将这三种大小特征图进行特征融合,FPN和APN的操作,这里不详细展开,主要需要注意的是特征提取网络需要提取出三种不同大小的特征图,我们选择特征提取网络的最后三次下采样的输出给Yolov5网络,就完成了特征提取网络的修改。
    以MobileNetv3-Small为例(我们甚至不需要自己搭建网络,直接挪用pytorch官方网络,以下网络任君选择)pytorch官网
    在这里插入图片描述
    输出网络结构,观察网络。mobilenetv3中主要分为features、avgpool、classify三部分组成,作用分别为特征提取、全局池化、分类器。我们只需要关注特征提取部分,并且着重关注于最后三次降采样部分,所以我们从最后开始往前进行观察。
    在这里插入图片描述

    在这里插入图片描述
    MobileNet中的倒数第一次下采样发生在第九个模块。(如何快速看到降采样,简单来讲就是stride为2的地方。当然实际还有kernel_size等于5或者其他情况,但是一般比较新的网络kernel_size为5伴随的还有2的padding,所以偷懒可以只看stride) 因此9-11对应YOLOv5倒数第一次降采样。
    在这里插入图片描述
    倒数第二次降采样4-8
    在这里插入图片描述
    倒数第三次降采样0-3
    在这里插入图片描述
    确定好网络提取方式后,第二步,在common.py中最后添加模块。可以看到非常简单,主要添加MobileNet的三个部分。

    from torchvision import models
    
    class MobileNet1(nn.Module):
        # out channel 24
        def __init__(self, ignore) -> None:
            super().__init__()
            model = models.mobilenet_v3_small(pretrained=True)
            modules = list(model.children())
            modules = modules[0][:4]
            self.model = nn.Sequential(*modules)
    
        def forward(self, x):
            return self.model(x)
    
    
    class MobileNet2(nn.Module):
        # out 48 channel
        def __init__(self, ignore) -> None:
            super().__init__()
            model = models.mobilenet_v3_small(pretrained=True)
            modules = list(model.children())
            modules = modules[0][4:9]
            self.model = nn.Sequential(*modules)
    
        def forward(self, x):
            return self.model(x)
    
    
    class MobileNet3(nn.Module):
        # out 576 channel
        def __init__(self, ignore) -> None:
            super().__init__()
            model = models.mobilenet_v3_small(pretrained=True)
            modules = list(model.children())
            modules = modules[0][9:]
            self.model = nn.Sequential(*modules)
        def forward(self, x):
            return self.model(x)
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39

    第三步,修改yolo.py 在这部分添加这行代码,意思是在解析yaml时放入相应的模块。arg[0]表示yaml模块后跟着的第一个参数,这个参数要告诉模型,此模块输出的通道数。可以回到上面看一看,三个模块的输出通道数为24、48、576。
    在这里插入图片描述
    最后添加模型的yaml,我选择以yolov5n为原型进行修改。

    yolov5n

    # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
    
    # Parameters
    nc: 80  # number of classes
    depth_multiple: 0.33  # model depth multiple
    width_multiple: 0.25  # layer channel multiple
    anchors:
      - [10,13, 16,30, 33,23]  # P3/8
      - [30,61, 62,45, 59,119]  # P4/16
      - [116,90, 156,198, 373,326]  # P5/32
    
    # YOLOv5 v6.0 backbone
    backbone:
      # [from, number, module, args]
      [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
       [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
       [-1, 3, C3, [128]],
       [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
       [-1, 6, C3, [256]],
       [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
       [-1, 9, C3, [512]],
       [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
       [-1, 3, C3, [1024]],
       [-1, 1, SPPF, [1024, 5]],  # 9
      ]
    
    # YOLOv5 v6.0 head
    head:
      [[-1, 1, Conv, [512, 1, 1]],
       [-1, 1, nn.Upsample, [None, 2, 'nearest']],
       [[-1, 6], 1, Concat, [1]],  # cat backbone P4
       [-1, 3, C3, [512, False]],  # 13
    
       [-1, 1, Conv, [256, 1, 1]],
       [-1, 1, nn.Upsample, [None, 2, 'nearest']],
       [[-1, 4], 1, Concat, [1]],  # cat backbone P3
       [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
    
       [-1, 1, Conv, [256, 3, 2]],
       [[-1, 14], 1, Concat, [1]],  # cat head P4
       [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
    
       [-1, 1, Conv, [512, 3, 2]],
       [[-1, 10], 1, Concat, [1]],  # cat head P5
       [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
    
       [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
      ]
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49

    yolov5n-mobilenet

    # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
    
    # Parameters
    nc: 80  # number of classes
    depth_multiple: 0.33  # model depth multiple
    width_multiple: 0.25  # layer channel multiple
    anchors:
      - [10,13, 16,30, 33,23]  # P3/8
      - [30,61, 62,45, 59,119]  # P4/16
      - [116,90, 156,198, 373,326]  # P5/32
    
    # YOLOv5 v6.0 backbone
    backbone:
      # [from, number, module, args]
      [[-1, 1, MobileNet1, [24]],  # 0
       [-1, 1, MobileNet2, [48]],  # 1
       [-1, 1, MobileNet3, [576]],  # 2
       [-1, 1, SPPF, [1024, 5]],  # 3
      ]
    
    # YOLOv5 v6.0 head
    head:
      [[-1, 1, Conv, [512, 1, 1]],
       [-1, 1, nn.Upsample, [None, 2, 'nearest']],
       [[-1, 1], 1, Concat, [1]],  # cat backbone P4
       [-1, 3, C3, [512, False]],  # 7
    
       [-1, 1, Conv, [256, 1, 1]],
       [-1, 1, nn.Upsample, [None, 2, 'nearest']],
       [[-1, 0], 1, Concat, [1]],  # cat backbone P3
       [-1, 3, C3, [256, False]],  # 11 (P3/8-small)
    
       [-1, 1, Conv, [256, 3, 2]],
       [[-1, 7], 1, Concat, [1]],  # cat head P4
       [-1, 3, C3, [512, False]],  # 14 (P4/16-medium)
    
       [-1, 1, Conv, [512, 3, 2]],
       [[-1, 3], 1, Concat, [1]],  # cat head P5
       [-1, 3, C3, [1024, False]],  # 17 (P5/32-large)
    
       [[11, 14, 17], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
      ]
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43

    修改的话其实很好理解,yolov5n的back可以按着#的序号来数,concat的就是下采样层,照葫芦画猫,序号改成我们的模块即可。

    最后使用–cfg调用即可

    python train.py --cfg yolov5n-mobileNet.yaml --weight yolov5n.pt
    
    • 1

    在这里插入图片描述

    简单讲一下Yolov5-MobileNetv3的表现,GFLOPs即运算量大幅度减少的同时,精度与yolov5n未使用预训练网络的性能相近。但是GPU环境下运算速度没有提升,主要由于SE模块的特点,不展开细讲,更适合CPU移动平台。

    小秀一下,只更改过一个数字的Yolov5贡献者。下一篇文章将介绍如何使用TensorRT C++加速yolov5.
    在这里插入图片描述

  • 相关阅读:
    人工智能对我们的生活影响有多大
    学习java的第二十九天。。。(多线程)
    Vite3 + Vue2.7 环境搭建(TS)
    haas506 2.0开发教程-高级组件库-modem.voiceCall(仅支持2.2以上版本)
    linux bash中 test命令详解
    Vue(七)——vuex(vuex基础,使用,state,getters,mutations,actions基本概念与使用以及基本实现案例)
    3.JMeter高级使用-让你与众不同
    倡导功能性农业农业大健康理念-国稻种芯·张立新:联姻农业
    计算机毕业设计(附源码)python智能居家养老服务平台
    华为电量分段图表实现过程
  • 原文地址:https://blog.csdn.net/rglkt/article/details/125509020