AtCoderABC257E - Addition and Multiplication 2
E - Addition and Multiplication 2 /
Time Limit: 2 sec / Memory Limit: 1024 MB
Score : 500 points
Problem Statement
Takahashi has an integer x. Initially, x=0.
Takahashi may do the following operation any number of times.
Choose an integer i (1≤i≤9). Pay C
i
yen (the currency in Japan) to replace x with 10x+i.
Takahashi has a budget of N yen. Find the maximum possible value of the final x resulting from operations without exceeding the budget.
Constraints
1≤N≤10
6
1≤C
i
≤N
All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
C
1
C
2
… C
9
Output
Print the answer.
Sample Input 1
Copy
5
5 4 3 3 2 5 3 5 3
Sample Output 1
Copy
95
For example, the operations where i=9 and i=5 in this order change x as:
0→9→95.
The amount of money required for these operations is C
9
+C
5
=3+2=5 yen, which does not exceed the budget. Since we can prove that we cannot make an integer greater than or equal to 96 without exceeding the budget, the answer is 95.
Sample Input 2
Copy
20
1 1 1 1 1 1 1 1 1
Sample Output 2
Copy
99999999999999999999
Note that the answer may not fit into a 64-bit integer type.
#include<bits/stdc++.h>
using namespace std;
int k,mi=1e9,n;
int a[100];
int main(){
scanf("%d",&k);
for(int i=1;i<=9;i++){
scanf("%d",&a[i]);
mi=min(mi,a[i]);
}
n=k/mi;
for(int i=1;i<=n;i++){
for(int j=9;j>=1;j--){
if(k-a[j]>=mi*(n-i)){
k-=a[j];
printf("%d",j);
break;
}
}
}
printf("\n");
return 0;
}