• 旋转框目标检测mmrotate v0.3.1 学习配置


    1、通过脚本参数修改配置。

    当使用"tools/train.py"或"tools/test.py"提交作业时,可以指定–cfg-options来就地修改配置。

    1、Update config keys of dict chains(更新配置文件字典中的键)

    配置选项可以按照原始配置中dict键的顺序指定。

    For example, 
    --cfg-options model.backbone.norm_eval=False 
    changes all BN modules in model backbones to train mode.
    
    • 1
    • 2
    • 3

    2、Update keys inside a list of configs.(更新配置文件中的)

    Some config dicts are composed as a list in your config. For example, the training pipeline data.train.pipeline is normally a list e.g. [dict(type=‘LoadImageFromFile’), …]. If you want to change ‘LoadImageFromFile’ to ‘LoadImageFromWebcam’ in the pipeline, you may specify --cfg-options data.train.pipeline.0.type=LoadImageFromWebcam.

    3、Update values of list/tuples.(更新列表数组中的值)

    If the value to be updated is a list or a tuple. For example, the config file normally sets workflow=[(‘train’, 1)]. If you want to change this key, you may specify --cfg-options workflow=“[(train,1),(val,1)]”. Note that the quotation mark ” is necessary to support list/tuple data types, and that NO white space is allowed inside the quotation marks in the specified valu

    2、配置文件命名约定

    我们遵循下面的样式来命名配置文件

    {model}_[model setting]_{backbone}_{neck}_[norm setting]_[misc]_[gpu x batch_per_gpu]_{dataset}_{data setting}_{angle version}
    
    • 1
    {xxx} is required field and [yyy] is optional.
    
    {model}: model type like rotated_faster_rcnn, rotated_retinanet, etc.
    
    [model setting]: specific setting for some model, like hbb for rotated_retinanet, etc.
    
    {backbone}: backbone type like r50 (ResNet-50), swin_tiny (SWIN-tiny).
    
    {neck}: neck type like fpn, refpn.
    
    [norm_setting]: bn (Batch Normalization) is used unless specified, other norm layer types could be gn (Group Normalization), syncbn (Synchronized Batch Normalization). gn-head/gn-neck indicates GN is applied in head/neck only, while gn-all means GN is applied in the entire model, e.g. backbone, neck, head.
    
    [misc]: miscellaneous setting/plugins of the model, e.g. dconv, gcb, attention, albu, mstrain.
    
    [gpu x batch_per_gpu]: GPUs and samples per GPU, 1xb2 is used by default.
    
    {dataset}: dataset like dota.
    
    {angle version}: like oc, le135, or le90.
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19

    3、RotatedRetinaNet的一个例子

    为了帮助用户对一个现代检测系统的完整配置和模块有一个基本的概念,下面我们简要介绍一下使用ResNet50和FPN的RotatedRetinaNet的配置。要了解每个模块的更详细用法和相应的替代方案,请参阅API文档。

    angle_version = 'oc'  # The angle version
    model = dict(
        type='RotatedRetinaNet',  # The name of detector
        backbone=dict(  # The config of backbone
            type='ResNet',  # The type of the backbone
            depth=50,  # The depth of backbone
            num_stages=4,  # Number of stages of the backbone.
            out_indices=(0, 1, 2, 3),  # The index of output feature maps produced in each stages
            frozen_stages=1,  # The weights in the first 1 stage are fronzen
            zero_init_residual=False,  # Whether to use zero init for last norm layer in resblocks to let them behave as identity.
            norm_cfg=dict(  # The config of normalization layers.
                type='BN',  # Type of norm layer, usually it is BN or GN
                requires_grad=True),  # Whether to train the gamma and beta in BN
            norm_eval=True,  # Whether to freeze the statistics in BN
            style='pytorch',  # The style of backbone, 'pytorch' means that stride 2 layers are in 3x3 conv, 'caffe' means stride 2 layers are in 1x1 convs.
            init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),  # The ImageNet pretrained backbone to be loaded
        neck=dict(
            type='FPN',  # The neck of detector is FPN. We also support 'ReFPN'
            in_channels=[256, 512, 1024, 2048],  # The input channels, this is consistent with the output channels of backbone
            out_channels=256,  # The output channels of each level of the pyramid feature map
            start_level=1,  # Index of the start input backbone level used to build the feature pyramid
            add_extra_convs='on_input',  # It specifies the source feature map of the extra convs
            num_outs=5),  # The number of output scales
        bbox_head=dict(
            type='RotatedRetinaHead',# The type of bbox head is 'RRetinaHead'
            num_classes=15,  # Number of classes for classification
            in_channels=256,  # Input channels for bbox head
            stacked_convs=4,  # Number of stacking convs of the head
            feat_channels=256,  # Number of hidden channels
            assign_by_circumhbbox='oc',  # The angle version of obb2hbb
            anchor_generator=dict(  # The config of anchor generator
                type='RotatedAnchorGenerator',  # The type of anchor generator
                octave_base_scale=4,  # The base scale of octave.
                scales_per_octave=3,  #  Number of scales for each octave.
                ratios=[1.0, 0.5, 2.0],  # The ratio between height and width.
                strides=[8, 16, 32, 64, 128]),  # The strides of the anchor generator. This is consistent with the FPN feature strides.
            bbox_coder=dict(  # Config of box coder to encode and decode the boxes during training and testing
                type='DeltaXYWHAOBBoxCoder',  # Type of box coder.
                angle_range='oc',  # The angle version of box coder.
                norm_factor=None,  # The norm factor of box coder.
                edge_swap=False,  # The edge swap flag of box coder.
                proj_xy=False,  # The project flag of box coder.
                target_means=(0.0, 0.0, 0.0, 0.0, 0.0),  # The target means used to encode and decode boxes
                target_stds=(1.0, 1.0, 1.0, 1.0, 1.0)),  # The standard variance used to encode and decode boxes
            loss_cls=dict(  # Config of loss function for the classification branch
                type='FocalLoss',  # Type of loss for classification branch
                use_sigmoid=True,  #  Whether the prediction is used for sigmoid or softmax
                gamma=2.0,  # The gamma for calculating the modulating factor
                alpha=0.25,  # A balanced form for Focal Loss
                loss_weight=1.0),  # Loss weight of the classification branch
            loss_bbox=dict(  # Config of loss function for the regression branch
                type='L1Loss',  # Type of loss
                loss_weight=1.0)),  # Loss weight of the regression branch
        train_cfg=dict(  # Config of training hyperparameters
            assigner=dict(  # Config of assigner
                type='MaxIoUAssigner',  # Type of assigner
                pos_iou_thr=0.5,  # IoU >= threshold 0.5 will be taken as positive samples
                neg_iou_thr=0.4,  # IoU < threshold 0.4 will be taken as negative samples
                min_pos_iou=0,  # The minimal IoU threshold to take boxes as positive samples
                ignore_iof_thr=-1,  # IoF threshold for ignoring bboxes
                iou_calculator=dict(type='RBboxOverlaps2D')),  # Type of Calculator for IoU
            allowed_border=-1,  # The border allowed after padding for valid anchors.
            pos_weight=-1,  # The weight of positive samples during training.
            debug=False),  # Whether to set the debug mode
        test_cfg=dict(  # Config of testing hyperparameters
            nms_pre=2000,  # The number of boxes before NMS
            min_bbox_size=0,  # The allowed minimal box size
            score_thr=0.05,  # Threshold to filter out boxes
            nms=dict(iou_thr=0.1), # NMS threshold
            max_per_img=2000))  # The number of boxes to be kept after NMS.
    dataset_type = 'DOTADataset'  # Dataset type, this will be used to define the dataset
    data_root = '../datasets/split_1024_dota1_0/'  # Root path of data
    img_norm_cfg = dict(  # Image normalization config to normalize the input images
        mean=[123.675, 116.28, 103.53],  # Mean values used to pre-training the pre-trained backbone models
        std=[58.395, 57.12, 57.375],  # Standard variance used to pre-training the pre-trained backbone models
        to_rgb=True)  # The channel orders of image used to pre-training the pre-trained backbone models
    train_pipeline = [  # Training pipeline
        dict(type='LoadImageFromFile'),  # First pipeline to load images from file path
        dict(type='LoadAnnotations',  # Second pipeline to load annotations for current image
             with_bbox=True),  # Whether to use bounding box, True for detection
        dict(type='RResize',  # Augmentation pipeline that resize the images and their annotations
             img_scale=(1024, 1024)),  # The largest scale of image
        dict(type='RRandomFlip',  # Augmentation pipeline that flip the images and their annotations
             flip_ratio=0.5,  # The ratio or probability to flip
             version='oc'),  # The angle version
        dict(
            type='Normalize',  # Augmentation pipeline that normalize the input images
            mean=[123.675, 116.28, 103.53],  # These keys are the same of img_norm_cfg since the
            std=[58.395, 57.12, 57.375],  # keys of img_norm_cfg are used here as arguments
            to_rgb=True),
        dict(type='Pad',  # Padding config
             size_divisor=32),  # The number the padded images should be divisible
        dict(type='DefaultFormatBundle'),  # Default format bundle to gather data in the pipeline
        dict(type='Collect',  # Pipeline that decides which keys in the data should be passed to the detector
             keys=['img', 'gt_bboxes', 'gt_labels'])
    ]
    test_pipeline = [
        dict(type='LoadImageFromFile'),  # First pipeline to load images from file path
        dict(
            type='MultiScaleFlipAug',  # An encapsulation that encapsulates the testing augmentations
            img_scale=(1024, 1024),  # Decides the largest scale for testing, used for the Resize pipeline
            flip=False,  # Whether to flip images during testing
            transforms=[
                dict(type='RResize'),  # Use resize augmentation
                dict(
                    type='Normalize',  # Normalization config, the values are from img_norm_cfg
                    mean=[123.675, 116.28, 103.53],
                    std=[58.395, 57.12, 57.375],
                    to_rgb=True),
                dict(type='Pad',  # Padding config to pad images divisible by 32.
                     size_divisor=32),
                dict(type='DefaultFormatBundle'),  # Default format bundle to gather data in the pipeline
                dict(type='Collect',  # Collect pipeline that collect necessary keys for testing.
                     keys=['img'])
            ])
    ]
    data = dict(
        samples_per_gpu=2,  # Batch size of a single GPU
        workers_per_gpu=2,  # Worker to pre-fetch data for each single GPU
        train=dict(  # Train dataset config
            type='DOTADataset',  # Type of dataset
            ann_file=
            '../datasets/split_1024_dota1_0/trainval/annfiles/',  # Path of annotation file
            img_prefix=
            '../datasets/split_1024_dota1_0/trainval/images/',  # Prefix of image path
            pipeline=[  # pipeline, this is passed by the train_pipeline created before.
                dict(type='LoadImageFromFile'),
                dict(type='LoadAnnotations', with_bbox=True),
                dict(type='RResize', img_scale=(1024, 1024)),
                dict(type='RRandomFlip', flip_ratio=0.5, version='oc'),
                dict(
                    type='Normalize',
                    mean=[123.675, 116.28, 103.53],
                    std=[58.395, 57.12, 57.375],
                    to_rgb=True),
                dict(type='Pad', size_divisor=32),
                dict(type='DefaultFormatBundle'),
                dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
            ],
            version='oc'),
        val=dict(  # Validation dataset config
            type='DOTADataset',
            ann_file=
            '../datasets/split_1024_dota1_0/trainval/annfiles/',
            img_prefix=
            '../datasets/split_1024_dota1_0/trainval/images/',
            pipeline=[
                dict(type='LoadImageFromFile'),
                dict(
                    type='MultiScaleFlipAug',
                    img_scale=(1024, 1024),
                    flip=False,
                    transforms=[
                        dict(type='RResize'),
                        dict(
                            type='Normalize',
                            mean=[123.675, 116.28, 103.53],
                            std=[58.395, 57.12, 57.375],
                            to_rgb=True),
                        dict(type='Pad', size_divisor=32),
                        dict(type='DefaultFormatBundle'),
                        dict(type='Collect', keys=['img'])
                    ])
            ],
            version='oc'),
        test=dict(  # Test dataset config, modify the ann_file for test-dev/test submission
            type='DOTADataset',
            ann_file=
            '../datasets/split_1024_dota1_0/test/images/',
            img_prefix=
            '../datasets/split_1024_dota1_0/test/images/',
            pipeline=[  # Pipeline is passed by test_pipeline created before
                dict(type='LoadImageFromFile'),
                dict(
                    type='MultiScaleFlipAug',
                    img_scale=(1024, 1024),
                    flip=False,
                    transforms=[
                        dict(type='RResize'),
                        dict(
                            type='Normalize',
                            mean=[123.675, 116.28, 103.53],
                            std=[58.395, 57.12, 57.375],
                            to_rgb=True),
                        dict(type='Pad', size_divisor=32),
                        dict(type='DefaultFormatBundle'),
                        dict(type='Collect', keys=['img'])
                    ])
            ],
            version='oc'))
    evaluation = dict(  # The config to build the evaluation hook
        interval=12,  # Evaluation interval
        metric='mAP')  # Metrics used during evaluation
    optimizer = dict(  # Config used to build optimizer
        type='SGD',  # Type of optimizers
        lr=0.0025,  # Learning rate of optimizers
        momentum=0.9,  # Momentum
        weight_decay=0.0001)  # Weight decay of SGD
    optimizer_config = dict(  # Config used to build the optimizer hook
        grad_clip=dict(
            max_norm=35,
            norm_type=2))
    lr_config = dict(  # Learning rate scheduler config used to register LrUpdater hook
        policy='step',  # The policy of scheduler
        warmup='linear',  # The warmup policy, also support `exp` and `constant`.
        warmup_iters=500,  # The number of iterations for warmup
        warmup_ratio=0.3333333333333333,  # The ratio of the starting learning rate used for warmup
        step=[8, 11])  # Steps to decay the learning rate
    runner = dict(
        type='EpochBasedRunner',  # Type of runner to use (i.e. IterBasedRunner or EpochBasedRunner)
        max_epochs=12) # Runner that runs the workflow in total max_epochs. For IterBasedRunner use `max_iters`
    checkpoint_config = dict(  # Config to set the checkpoint hook
        interval=12)  # The save interval is 12
    log_config = dict(  # config to register logger hook
        interval=50,  # Interval to print the log
        hooks=[
            # dict(type='TensorboardLoggerHook')  # The Tensorboard logger is also supported
            dict(type='TextLoggerHook')
        ])  # The logger used to record the training process.
    dist_params = dict(backend='nccl')  # Parameters to setup distributed training, the port can also be set.
    log_level = 'INFO'  # The level of logging.
    load_from = None  # load models as a pre-trained model from a given path. This will not resume training.
    resume_from = None  # Resume checkpoints from a given path, the training will be resumed from the epoch when the checkpoint's is saved.
    workflow = [('train', 1)]  # Workflow for runner. [('train', 1)] means there is only one workflow and the workflow named 'train' is executed once. The workflow trains the model by 12 epochs according to the total_epochs.
    work_dir = './work_dirs/rotated_retinanet_hbb_r50_fpn_1x_dota_oc'  # Directory to save the model checkpoints and logs for the current experiments.
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
    • 210
    • 211
    • 212
    • 213
    • 214
    • 215
    • 216
    • 217
    • 218
    • 219
    • 220
    • 221
    • 222
    • 223
    • 224
    • 225

    4、在配置中使用中间变量

    一些中间变量在配置文件中使用,比如数据集中的train_pipeline/test_pipeline。值得注意的是,当修改子配置中的中间变量时,用户需要将中间变量再次传递到相应的字段中。例如,我们希望使用离线多尺度策略来训练rol- trans。Train_pipeline是我们想修改的中间变量。

    _base_ = ['./roi_trans_r50_fpn_1x_dota_le90.py']
    
    data_root = '../datasets/split_ms_dota1_0/'
    angle_version = 'le90'
    img_norm_cfg = dict(
        mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
    train_pipeline = [
        dict(type='LoadImageFromFile'),
        dict(type='LoadAnnotations', with_bbox=True),
        dict(type='RResize', img_scale=(1024, 1024)),
        dict(
            type='RRandomFlip',
            flip_ratio=[0.25, 0.25, 0.25],
            direction=['horizontal', 'vertical', 'diagonal'],
            version=angle_version),
        dict(
            type='PolyRandomRotate',
            rotate_ratio=0.5,
            angles_range=180,
            auto_bound=False,
            version=angle_version),
        dict(type='Normalize', **img_norm_cfg),
        dict(type='Pad', size_divisor=32),
        dict(type='DefaultFormatBundle'),
        dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
    ]
    data = dict(
        train=dict(
            pipeline=train_pipeline,
            ann_file=data_root + 'trainval/annfiles/',
            img_prefix=data_root + 'trainval/images/'),
        val=dict(
            ann_file=data_root + 'trainval/annfiles/',
            img_prefix=data_root + 'trainval/images/'),
        test=dict(
            ann_file=data_root + 'test/images/',
            img_prefix=data_root + 'test/images/'))
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37

    我们首先定义新的train_pipeline/test_pipeline,并将它们传递给数据。
    类似地,如果我们想从SyncBN切换到BN或MMSyncBN,我们需要替换配置中的每个norm_cfg。

    _base_ = './roi_trans_r50_fpn_1x_dota_le90.py'
    norm_cfg = dict(type='BN', requires_grad=True)
    model = dict(
        backbone=dict(norm_cfg=norm_cfg),
        neck=dict(norm_cfg=norm_cfg),
        ...)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
  • 相关阅读:
    leetcode:891. 子序列宽度之和【排序 + 贡献法】
    分布式--OpenResty+lua+Redis实现限流与防爬虫
    用户空间协议栈设计和netmap综合指南
    【C++ 学习 ㉙】- 详解 C++11 的 constexpr 和 decltype 关键字
    思腾云计算
    volatile关键字及内存可见性,指令重排序
    SpringCloud 学习笔记(2 / 3)
    技术分享 | 如何确保API 的稳定性与正确性?你只需要这一招
    Go的简单入门:开始使用泛型
    SpringBoot整合ElasticSearch应用
  • 原文地址:https://blog.csdn.net/qq_41627642/article/details/125373011