https://www.luogu.com.cn/problem/CF1327D
题面翻译:
T
T
T组数据。每次给一个长度为
n
n
n的置换
p
p
p和颜色数组
c
c
c,求最小的
k
k
k,使
p
k
p^k
pk中存在一个“同色环”。即,存在
i
i
i,使
p
i
k
p^k_i
pik,
p
p
i
k
k
p_{p^k_i}^k
ppikk,
…
\dots
…,全部同色。
数据范围: 1 ≤ T ≤ 1 0 4 1\le T\le 10^4 1≤T≤104, 1 ≤ n , ∑ n ≤ 2 × 1 0 5 1\le n,\sum n\le 2\times 10^5 1≤n,∑n≤2×105。
题目描述:
You are given a colored permutation
p
1
,
p
2
,
…
,
p
n
p_1, p_2, \dots, p_n
p1,p2,…,pn . The
i
i
i -th element of the permutation has color
c
i
c_i
ci .
Let’s define an infinite path as infinite sequence i , p [ i ] , p [ p [ i ] ] , p [ p [ p [ i ] ] ] … i, p[i], p[p[i]], p[p[p[i]]] \dots i,p[i],p[p[i]],p[p[p[i]]]… where all elements have same color ( c [ i ] = c [ p [ i ] ] = c [ p [ p [ i ] ] ] = … c[i] = c[p[i]] = c[p[p[i]]] = \dots c[i]=c[p[i]]=c[p[p[i]]]=… ).
We can also define a multiplication of permutations a a a and b b b as permutation c = a × b c = a \times b c=a×b where c [ i ] = b [ a [ i ] ] c[i] = b[a[i]] c[i]=b[a[i]] . Moreover, we can define a power k k k of permutation p p p as p k = p × p × ⋯ × p ⏟ k times p^k=\underbrace{p \times p \times \dots \times p}_{k \text{ times}} pk=k times p×p×⋯×p .
Find the minimum k > 0 k > 0 k>0 such that p k p^k pk has at least one infinite path (i.e. there is a position i i i in p k p^k pk such that the sequence starting from i i i is an infinite path).
It can be proved that the answer always exists.
输入格式:
The first line contains single integer
T
T
T (
1
≤
T
≤
1
0
4
1 \le T \le 10^4
1≤T≤104 ) — the number of test cases.
Next 3 T 3T 3T lines contain test cases — one per three lines. The first line contains single integer n n n ( 1 ≤ n ≤ 2 ⋅ 1 0 5 1 \le n \le 2 \cdot 10^5 1≤n≤2⋅105 ) — the size of the permutation.
The second line contains n n n integers p 1 , p 2 , … , p n p_1, p_2, \dots, p_n p1,p2,…,pn ( 1 ≤ p i ≤ n 1 \le p_i \le n 1≤pi≤n , p i ≠ p j p_i \neq p_j pi=pj for i ≠ j i \neq j i=j ) — the permutation p p p .
The third line contains n n n integers c 1 , c 2 , … , c n c_1, c_2, \dots, c_n c1,c2,…,cn ( 1 ≤ c i ≤ n 1 \le c_i \le n 1≤ci≤n ) — the colors of elements of the permutation.
It is guaranteed that the total sum of n n n doesn’t exceed 2 ⋅ 1 0 5 2 \cdot 10^5 2⋅105 .
输出格式:
Print
T
T
T integers — one per test case. For each test case print minimum
k
>
0
k > 0
k>0 such that
p
k
p^k
pk has at least one infinite path.
首先每个置换可以分解为若干轮换之乘积,每个轮换是一个封闭的集合,那么同色环一定在某个轮换里。由于循环群的子群也一定是循环群,并且子群的阶是群的阶的因子,从而可以从小到大枚举所有因子,看哪个因子对应的子群是个同色环;对于每个轮换都找到最小的同色环,求出整体的最小解即可。代码如下:
#include <iostream>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
using namespace std;
const int N = 2e5 + 10, INF = N;
int n, a[N], col[N];
bool vis[N];
vector<int> v, fac;
int res;
// 看是否存在同色的k阶子群
bool check(int k) {
// 所有的k阶子群其实都是群在某个k阶子群下的陪集分解,枚举所有的k阶子群
for (int s = 0; s < k; s++) {
int color = col[v[s]];
bool flag = 1;
// 看该子群是否同色
for (int p = s + k; p < v.size(); p += k)
if (col[v[p]] != color) {
flag = 0;
break;
}
// 如果同色,说明存在k阶同色子群,返回true
if (flag) return true;
}
return false;
}
int main() {
int T;
scanf("%d", &T);
while (T--) {
// 初始化一下答案
res = INF;
memset(vis, 0, sizeof vis);
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
for (int i = 1; i <= n; i++) scanf("%d", &col[i]);
for (int i = 1; i <= n; i++) {
if (vis[i]) continue;
// 求出i所在的轮换
vis[i] = 1;
v.clear();
int p = a[i];
v.push_back(i);
for (; p != i; p = a[p]) v.push_back(p), vis[p] = 1;
// 求出该轮换的阶的所有因子
fac.clear();
int s = v.size();
for (int k = 1; k <= sqrt(s); k++) {
if (s % k) continue;
fac.push_back(k);
if (k < s / k) fac.push_back(s / k);
}
// 对因子从小到大排序
sort(fac.begin(), fac.end());
// 枚举因子,求出最小的同色子群
for (int x : fac)
if (check(x)) {
// 找到最小的同色子群,用其阶更新答案
res = min(res, x);
break;
}
}
printf("%d\n", res);
}
}
每次询问时间复杂度 O ( ∑ i l i l i ) O(\sum_i l_i\sqrt {l_i}) O(∑ilili), l i l_i li是轮换的长度,所以 ∑ l i = n \sum l_i=n ∑li=n,空间 O ( n ) O(n) O(n)。