• 【CodeForces】CF1327D Infinite Path


    题目地址:

    https://www.luogu.com.cn/problem/CF1327D

    题面翻译:
    T T T组数据。每次给一个长度为 n n n的置换 p p p和颜色数组 c c c,求最小的 k k k,使 p k p^k pk中存在一个“同色环”。即,存在 i i i,使 p i k p^k_i pik p p i k k p_{p^k_i}^k ppikk … \dots ,全部同色。

    数据范围: 1 ≤ T ≤ 1 0 4 1\le T\le 10^4 1T104 1 ≤ n , ∑ n ≤ 2 × 1 0 5 1\le n,\sum n\le 2\times 10^5 1n,n2×105

    题目描述:
    You are given a colored permutation p 1 , p 2 , … , p n p_1, p_2, \dots, p_n p1,p2,,pn . The i i i -th element of the permutation has color c i c_i ci .

    Let’s define an infinite path as infinite sequence i , p [ i ] , p [ p [ i ] ] , p [ p [ p [ i ] ] ] … i, p[i], p[p[i]], p[p[p[i]]] \dots i,p[i],p[p[i]],p[p[p[i]]] where all elements have same color ( c [ i ] = c [ p [ i ] ] = c [ p [ p [ i ] ] ] = … c[i] = c[p[i]] = c[p[p[i]]] = \dots c[i]=c[p[i]]=c[p[p[i]]]= ).

    We can also define a multiplication of permutations a a a and b b b as permutation c = a × b c = a \times b c=a×b where c [ i ] = b [ a [ i ] ] c[i] = b[a[i]] c[i]=b[a[i]] . Moreover, we can define a power k k k of permutation p p p as p k = p × p × ⋯ × p ⏟ k  times p^k=\underbrace{p \times p \times \dots \times p}_{k \text{ times}} pk=k times p×p××p .

    Find the minimum k > 0 k > 0 k>0 such that p k p^k pk has at least one infinite path (i.e. there is a position i i i in p k p^k pk such that the sequence starting from i i i is an infinite path).

    It can be proved that the answer always exists.

    输入格式:
    The first line contains single integer T T T ( 1 ≤ T ≤ 1 0 4 1 \le T \le 10^4 1T104 ) — the number of test cases.

    Next 3 T 3T 3T lines contain test cases — one per three lines. The first line contains single integer n n n ( 1 ≤ n ≤ 2 ⋅ 1 0 5 1 \le n \le 2 \cdot 10^5 1n2105 ) — the size of the permutation.

    The second line contains n n n integers p 1 , p 2 , … , p n p_1, p_2, \dots, p_n p1,p2,,pn ( 1 ≤ p i ≤ n 1 \le p_i \le n 1pin , p i ≠ p j p_i \neq p_j pi=pj for i ≠ j i \neq j i=j ) — the permutation p p p .

    The third line contains n n n integers c 1 , c 2 , … , c n c_1, c_2, \dots, c_n c1,c2,,cn ( 1 ≤ c i ≤ n 1 \le c_i \le n 1cin ) — the colors of elements of the permutation.

    It is guaranteed that the total sum of n n n doesn’t exceed 2 ⋅ 1 0 5 2 \cdot 10^5 2105 .

    输出格式:
    Print T T T integers — one per test case. For each test case print minimum k > 0 k > 0 k>0 such that p k p^k pk has at least one infinite path.

    首先每个置换可以分解为若干轮换之乘积,每个轮换是一个封闭的集合,那么同色环一定在某个轮换里。由于循环群的子群也一定是循环群,并且子群的阶是群的阶的因子,从而可以从小到大枚举所有因子,看哪个因子对应的子群是个同色环;对于每个轮换都找到最小的同色环,求出整体的最小解即可。代码如下:

    #include <iostream>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    #include <vector>
    using namespace std;
    
    const int N = 2e5 + 10, INF = N;
    int n, a[N], col[N];
    bool vis[N];
    vector<int> v, fac;
    int res;
    
    // 看是否存在同色的k阶子群
    bool check(int k) {
      // 所有的k阶子群其实都是群在某个k阶子群下的陪集分解,枚举所有的k阶子群
      for (int s = 0; s < k; s++) {
        int color = col[v[s]];
        bool flag = 1;
        // 看该子群是否同色
        for (int p = s + k; p < v.size(); p += k)
          if (col[v[p]] != color) {
            flag = 0; 
            break;
          }
        // 如果同色,说明存在k阶同色子群,返回true
        if (flag) return true;
      }
      return false;
    }
    
    int main() {
      int T;
      scanf("%d", &T);
      while (T--) {
        // 初始化一下答案
        res = INF;
        memset(vis, 0, sizeof vis);
        scanf("%d", &n);
        for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
        for (int i = 1; i <= n; i++) scanf("%d", &col[i]);
        
        for (int i = 1; i <= n; i++) {
          if (vis[i]) continue;
          // 求出i所在的轮换
          vis[i] = 1;
          v.clear();
          int p = a[i];
          v.push_back(i);
          for (; p != i; p = a[p]) v.push_back(p), vis[p] = 1;
          // 求出该轮换的阶的所有因子
          fac.clear();
          int s = v.size();
          for (int k = 1; k <= sqrt(s); k++) {
            if (s % k) continue;
            fac.push_back(k);
            if (k < s / k) fac.push_back(s / k);
          }
          // 对因子从小到大排序
          sort(fac.begin(), fac.end());
          // 枚举因子,求出最小的同色子群
          for (int x : fac) 
            if (check(x)) {
              // 找到最小的同色子群,用其阶更新答案
              res = min(res, x);
              break;
            }
        }
    
        printf("%d\n", res);
      }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72

    每次询问时间复杂度 O ( ∑ i l i l i ) O(\sum_i l_i\sqrt {l_i}) O(ilili ) l i l_i li是轮换的长度,所以 ∑ l i = n \sum l_i=n li=n,空间 O ( n ) O(n) O(n)

  • 相关阅读:
    【vue】el-carousel实现视频自动播放与自动切换到下一个视频功能:
    2023年9月 少儿编程 中国电子学会图形化编程等级考试Scratch编程一级真题解析(判断题)
    软件开发基础【信息系统监理师】
    Cpp/Qt-day040920Qt
    【坚持不懈的每日一题——力扣篇】1796. 字符串中第二大的数字(简单)+set 用法复习
    基于JAVA中华二十四节气文化传承宣展平台计算机毕业设计源码+系统+数据库+lw文档+部署
    mac 下载、安装、配置mysql详细教程
    局域网内root 权限连接mysql数据库
    STC89C51基础及项目第10天:LCD显示字符(非标协议外设)
    云表低代码开发平台赋能仓储管理,助力企业高效增长
  • 原文地址:https://blog.csdn.net/qq_46105170/article/details/125455290