• 【牛客刷题-SQL大厂面试真题】NO1.某音短视频


    在这里插入图片描述
    体系化学习SQL,请到牛客经典高频面试题库,参加实训,提高你的SQL技能吧~

    https://www.nowcoder.com/link/pc_csdncpt_itbd_sql

    前言

    SQL每个人都要用,但是用来衡量产出的并不是SQL本身,你需要用这个工具,去创造其它的价值。

    在这里插入图片描述

    🐴 SQL1 各个视频的平均完播率

    🚀 建表语句

    DROP TABLE IF EXISTS tb_user_video_log, tb_video_info;
    CREATE TABLE tb_user_video_log (
        id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
        uid INT NOT NULL COMMENT '用户ID',
        video_id INT NOT NULL COMMENT '视频ID',
        start_time datetime COMMENT '开始观看时间',
        end_time datetime COMMENT '结束观看时间',
        if_follow TINYINT COMMENT '是否关注',
        if_like TINYINT COMMENT '是否点赞',
        if_retweet TINYINT COMMENT '是否转发',
        comment_id INT COMMENT '评论ID'
    ) CHARACTER SET utf8 COLLATE utf8_bin;
    
    CREATE TABLE tb_video_info (
        id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
        video_id INT UNIQUE NOT NULL COMMENT '视频ID',
        author INT NOT NULL COMMENT '创作者ID',
        tag VARCHAR(16) NOT NULL COMMENT '类别标签',
        duration INT NOT NULL COMMENT '视频时长(秒数)',
        release_time datetime NOT NULL COMMENT '发布时间'
    )CHARACTER SET utf8 COLLATE utf8_bin;
    
    INSERT INTO tb_user_video_log(uid, video_id, start_time, end_time, if_follow, if_like, if_retweet, comment_id) VALUES
      (101, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:30', 0, 1, 1, null),
      (102, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:24', 0, 0, 1, null),
      (103, 2001, '2021-10-01 11:00:00', '2021-10-01 11:00:34', 0, 1, 0, 1732526),
      (101, 2002, '2021-09-01 10:00:00', '2021-09-01 10:00:42', 1, 0, 1, null),
      (102, 2002, '2021-10-01 11:00:00', '2021-10-01 11:00:30', 1, 0, 1, null);
    
    INSERT INTO tb_video_info(video_id, author, tag, duration, release_time) VALUES
      (2001, 901, '影视', 30, '2021-01-01 7:00:00'),
      (2002, 901, '美食', 60, '2021-01-01 7:00:00'),
      (2003, 902, '旅游', 90, '2021-01-01 7:00:00');
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33

    📖 需求

    问题:计算2021年里有播放记录的每个视频的完播率(结果保留三位小数),并按完播率降序排序
    注:视频完播率是指完成播放次数占总播放次数的比例。简单起见,
    结束观看时间与开始播放时间的差>=视频时长时,视为完成播放。
    
    • 1
    • 2
    • 3

    🍌🍌 答案

    select a.video_id,
    round(sum(case when timestampdiff(second,b.start_time,b.end_time)>=a.duration 
              then 1 else 0 end)/count(b.uid),3)
    as avg_com_play_rate
    from tb_video_info a join tb_user_video_log b on a.video_id=b.video_id
    where YEAR(b.start_time) = 2021
    group by a.video_id
    order by avg_com_play_rate desc
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

    在这里插入图片描述

    🐴 SQL2 平均播放进度大于60%的视频类别

    🚀 建表语句

    DROP TABLE IF EXISTS tb_user_video_log, tb_video_info;
    CREATE TABLE tb_user_video_log (
        id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
        uid INT NOT NULL COMMENT '用户ID',
        video_id INT NOT NULL COMMENT '视频ID',
        start_time datetime COMMENT '开始观看时间',
        end_time datetime COMMENT '结束观看时间',
        if_follow TINYINT COMMENT '是否关注',
        if_like TINYINT COMMENT '是否点赞',
        if_retweet TINYINT COMMENT '是否转发',
        comment_id INT COMMENT '评论ID'
    ) CHARACTER SET utf8 COLLATE utf8_bin;
    
    CREATE TABLE tb_video_info (
        id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
        video_id INT UNIQUE NOT NULL COMMENT '视频ID',
        author INT NOT NULL COMMENT '创作者ID',
        tag VARCHAR(16) NOT NULL COMMENT '类别标签',
        duration INT NOT NULL COMMENT '视频时长(秒数)',
        release_time datetime NOT NULL COMMENT '发布时间'
    )CHARACTER SET utf8 COLLATE utf8_bin;
    
    INSERT INTO tb_user_video_log(uid, video_id, start_time, end_time, if_follow, if_like, if_retweet, comment_id) VALUES
      (101, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:30', 0, 1, 1, null),
      (102, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:21', 0, 0, 1, null),
      (103, 2001, '2021-10-01 11:00:50', '2021-10-01 11:01:20', 0, 1, 0, 1732526),
      (102, 2002, '2021-10-01 11:00:00', '2021-10-01 11:00:30', 1, 0, 1, null),
      (103, 2002, '2021-10-01 10:59:05', '2021-10-01 11:00:05', 1, 0, 1, null);
    
    INSERT INTO tb_video_info(video_id, author, tag, duration, release_time) VALUES
      (2001, 901, '影视', 30, '2021-01-01 7:00:00'),
      (2002, 901, '美食', 60, '2021-01-01 7:00:00'),
      (2003, 902, '旅游', 90, '2020-01-01 7:00:00');
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33

    📖 需求

    问题:计算各类视频的平均播放进度,将进度大于60%的类别输出。
    注:
    播放进度=播放时长÷视频时长*100%,当播放时长大于视频时长时,播放进度均记为100%。
    结果保留两位小数,并按播放进度倒序排序。
    
    • 1
    • 2
    • 3
    • 4

    🍌🍌 答案

    select
    tag,
    concat(
        ROUND(
            avg(
                if(
                    timestampdiff(second,start_time,end_time)>=duration,
                    1,timestampdiff(second,start_time,end_time)/duration
                   )
                )*100
                ,2)
        ,'%') avg_play_progress
    from 
    tb_user_video_log a join tb_video_info b
    on a.video_id=b.video_id
    group by b.tag
    having avg(
                if(
                    timestampdiff(second,start_time,end_time)>=duration,
                    1,timestampdiff(second,start_time,end_time)/duration
                   )
        )>0.6
    order by avg_play_progress desc
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23

    在这里插入图片描述

    🐴 SQL3 每类视频近一个月的转发量/率

    🚀 建表语句

    DROP TABLE IF EXISTS tb_user_video_log, tb_video_info;
    CREATE TABLE tb_user_video_log (
        id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
        uid INT NOT NULL COMMENT '用户ID',
        video_id INT NOT NULL COMMENT '视频ID',
        start_time datetime COMMENT '开始观看时间',
        end_time datetime COMMENT '结束观看时间',
        if_follow TINYINT COMMENT '是否关注',
        if_like TINYINT COMMENT '是否点赞',
        if_retweet TINYINT COMMENT '是否转发',
        comment_id INT COMMENT '评论ID'
    ) CHARACTER SET utf8 COLLATE utf8_bin;
    
    CREATE TABLE tb_video_info (
        id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
        video_id INT UNIQUE NOT NULL COMMENT '视频ID',
        author INT NOT NULL COMMENT '创作者ID',
        tag VARCHAR(16) NOT NULL COMMENT '类别标签',
        duration INT NOT NULL COMMENT '视频时长(秒数)',
        release_time datetime NOT NULL COMMENT '发布时间'
    )CHARACTER SET utf8 COLLATE utf8_bin;
    
    INSERT INTO tb_user_video_log(uid, video_id, start_time, end_time, if_follow, if_like, if_retweet, comment_id) VALUES
       (101, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:20', 0, 1, 1, null)
      ,(102, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:15', 0, 0, 1, null)
      ,(103, 2001, '2021-10-01 11:00:50', '2021-10-01 11:01:15', 0, 1, 0, 1732526)
      ,(102, 2002, '2021-09-10 11:00:00', '2021-09-10 11:00:30', 1, 0, 1, null)
      ,(103, 2002, '2021-10-01 10:59:05', '2021-10-01 11:00:05', 1, 0, 0, null);
    
    INSERT INTO tb_video_info(video_id, author, tag, duration, release_time) VALUES
       (2001, 901, '影视', 30, '2021-01-01 7:00:00')
      ,(2002, 901, '美食', 60, '2021-01-01 7:00:00')
      ,(2003, 902, '旅游', 90, '2020-01-01 7:00:00');
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33

    📖 需求

    问题:统计在有用户互动的最近一个月(按包含当天在内的近30天算,
    比如1031日的近30天为10.2~10.31之间的数据)中,每类视频的转发量和转发率(保留3位小数)。
    注:转发率=转发量÷播放量。结果按转发率降序排序。
    
    • 1
    • 2
    • 3

    🍌🍌 答案

    select b.tag, sum(if_retweet) retweet_cnt,  
    round(sum(if_retweet)/count(1),3) retweet_rate from
    tb_user_video_log a
    left join  tb_video_info b
    on a.video_id = b.video_id
    where DATEDIFF(DATE((select max(start_time) from tb_user_video_log)) ,
                   DATE(start_time)) <= 29
    group by b.tag
    order by 2 desc
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    在这里插入图片描述

    🐴 SQL4 每个创作者每月的涨粉率及截止当前的总粉丝量

    🚀 建表语句

    DROP TABLE IF EXISTS tb_user_video_log, tb_video_info;
    CREATE TABLE tb_user_video_log (
        id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
        uid INT NOT NULL COMMENT '用户ID',
        video_id INT NOT NULL COMMENT '视频ID',
        start_time datetime COMMENT '开始观看时间',
        end_time datetime COMMENT '结束观看时间',
        if_follow TINYINT COMMENT '是否关注',
        if_like TINYINT COMMENT '是否点赞',
        if_retweet TINYINT COMMENT '是否转发',
        comment_id INT COMMENT '评论ID'
    ) CHARACTER SET utf8 COLLATE utf8_bin;
    
    CREATE TABLE tb_video_info (
        id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
        video_id INT UNIQUE NOT NULL COMMENT '视频ID',
        author INT NOT NULL COMMENT '创作者ID',
        tag VARCHAR(16) NOT NULL COMMENT '类别标签',
        duration INT NOT NULL COMMENT '视频时长(秒数)',
        release_time datetime NOT NULL COMMENT '发布时间'
    )CHARACTER SET utf8 COLLATE utf8_bin;
    
    INSERT INTO tb_user_video_log(uid, video_id, start_time, end_time, if_follow, if_like, if_retweet, comment_id) VALUES
       (101, 2001, '2021-09-01 10:00:00', '2021-09-01 10:00:20', 0, 1, 1, null)
      ,(105, 2002, '2021-09-10 11:00:00', '2021-09-10 11:00:30', 1, 0, 1, null)
      ,(101, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:20', 1, 1, 1, null)
      ,(102, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:15', 0, 0, 1, null)
      ,(103, 2001, '2021-10-01 11:00:50', '2021-10-01 11:01:15', 1, 1, 0, 1732526)
      ,(106, 2002, '2021-10-01 10:59:05', '2021-10-01 11:00:05', 2, 0, 0, null);
    
    INSERT INTO tb_video_info(video_id, author, tag, duration, release_time) VALUES
       (2001, 901, '影视', 30, '2021-01-01 7:00:00')
      ,(2002, 901, '影视', 60, '2021-01-01 7:00:00')
      ,(2003, 902, '旅游', 90, '2020-01-01 7:00:00')
      ,(2004, 902, '美女', 90, '2020-01-01 8:00:00');
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35

    📖 需求

    问题:计算2021年里每个创作者每月的涨粉率及截止当月的总粉丝量
    注:
    涨粉率=(加粉量 - 掉粉量) / 播放量。结果按创作者ID、总粉丝量升序排序。
    if_follow-是否关注为1表示用户观看视频中关注了视频创作者,
    为0表示此次互动前后关注状态未发生变化,为2表示本次观看过程中取消了关注。
    
    • 1
    • 2
    • 3
    • 4
    • 5

    🍌🍌 答案

    SELECT B.AUTHOR AS AUTHOR,DATE_FORMAT(A.start_time,'%Y-%m') AS MONTH ,
    ROUND((COUNT(CASE WHEN A.if_follow=1 THEN 1 END ) - 
           COUNT(CASE WHEN A.if_follow=2 THEN 1 END ))/COUNT(1) ,3) 
           AS FANS_GROWTH_RATE,
    sum(sum(case when A.if_follow = 1 then 1
             when A.if_follow = 2 then -1
             else 0 end) ) over (partition by B.author 
                                 order by date_format(A.start_time,'%Y-%m')) 
                                 fans_total
    FROM tb_user_video_log A 
    LEFT JOIN tb_video_info B 
    ON A.VIDEO_ID=B.video_id
    WHERE year(A.start_time)=2021
    and year(A.end_time)=2021
    GROUP BY B.AUTHOR,DATE_FORMAT(A.start_time,'%Y-%m')
    ORDER BY AUTHOR,fans_total
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16

    在这里插入图片描述

    🐴 SQL5 国庆期间每类视频点赞量和转发量

    🚀 建表语句

    DROP TABLE IF EXISTS tb_user_video_log, tb_video_info;
    CREATE TABLE tb_user_video_log (
        id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
        uid INT NOT NULL COMMENT '用户ID',
        video_id INT NOT NULL COMMENT '视频ID',
        start_time datetime COMMENT '开始观看时间',
        end_time datetime COMMENT '结束观看时间',
        if_follow TINYINT COMMENT '是否关注',
        if_like TINYINT COMMENT '是否点赞',
        if_retweet TINYINT COMMENT '是否转发',
        comment_id INT COMMENT '评论ID'
    ) CHARACTER SET utf8 COLLATE utf8_bin;
    
    CREATE TABLE tb_video_info (
        id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
        video_id INT UNIQUE NOT NULL COMMENT '视频ID',
        author INT NOT NULL COMMENT '创作者ID',
        tag VARCHAR(16) NOT NULL COMMENT '类别标签',
        duration INT NOT NULL COMMENT '视频时长(秒数)',
        release_time datetime NOT NULL COMMENT '发布时间'
    )CHARACTER SET utf8 COLLATE utf8_bin;
    
    INSERT INTO tb_user_video_log(uid, video_id, start_time, end_time, if_follow, if_like, if_retweet, comment_id) VALUES
       (101, 2001, '2021-09-24 10:00:00', '2021-09-24 10:00:20', 1, 1, 0, null)
      ,(105, 2002, '2021-09-25 11:00:00', '2021-09-25 11:00:30', 0, 0, 1, null)
      ,(102, 2002, '2021-09-25 11:00:00', '2021-09-25 11:00:30', 1, 1, 1, null)
      ,(101, 2002, '2021-09-26 11:00:00', '2021-09-26 11:00:30', 1, 0, 1, null)
      ,(101, 2002, '2021-09-27 11:00:00', '2021-09-27 11:00:30', 1, 1, 0, null)
      ,(102, 2002, '2021-09-28 11:00:00', '2021-09-28 11:00:30', 1, 0, 1, null)
      ,(103, 2002, '2021-09-29 11:00:00', '2021-09-29 11:00:30', 1, 0, 1, null)
      ,(102, 2002, '2021-09-30 11:00:00', '2021-09-30 11:00:30', 1, 1, 1, null)
      ,(101, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:20', 1, 1, 0, null)
      ,(102, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:15', 0, 0, 1, null)
      ,(103, 2001, '2021-10-01 11:00:50', '2021-10-01 11:01:15', 1, 1, 0, 1732526)
      ,(106, 2002, '2021-10-02 10:59:05', '2021-10-02 11:00:05', 2, 0, 1, null)
      ,(107, 2002, '2021-10-02 10:59:05', '2021-10-02 11:00:05', 1, 0, 1, null)
      ,(108, 2002, '2021-10-02 10:59:05', '2021-10-02 11:00:05', 1, 1, 1, null)
      ,(109, 2002, '2021-10-03 10:59:05', '2021-10-03 11:00:05', 0, 1, 0, null);
    
    INSERT INTO tb_video_info(video_id, author, tag, duration, release_time) VALUES
       (2001, 901, '旅游', 30, '2020-01-01 7:00:00')
      ,(2002, 901, '旅游', 60, '2021-01-01 7:00:00')
      ,(2003, 902, '影视', 90, '2020-01-01 7:00:00')
      ,(2004, 902, '美女', 90, '2020-01-01 8:00:00');
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44

    📖 需求

    问题:统计2021年国庆头3天每类视频每天的近一周总点赞量和一周内最大单天转发量,
    结果按视频类别降序、日期升序排序。假设数据库中数据足够多,
    至少每个类别下国庆头3天及之前一周的每天都有播放记录。
    
    • 1
    • 2
    • 3

    🍌🍌 答案

    select t1.tag,t1.day,sum(t2.likes),max(t2.retweet)
    FROM
    (select t2.tag ,left(t1.start_time,10) day,
     sum(t1.if_like) as likes,sum(t1.if_retweet) as retweet
    from tb_user_video_log t1 left join 
    tb_video_info t2
    on t1.video_id=t2.video_id
    group by t2.tag,day) t1
    left join 
    (select t2.tag ,left(t1.start_time,10) day,
     sum(t1.if_like) as likes,sum(t1.if_retweet) as retweet
    from tb_user_video_log t1 left join 
    tb_video_info t2
    on t1.video_id=t2.video_id
    group by t2.tag,day) t2
    on t1.tag=t2.tag
    where TIMESTAMPDIFF(day,t2.day,t1.day)<7
    and TIMESTAMPDIFF(day,t2.day,t1.day)>=0
    and t1.day in ("2021-10-01","2021-10-02","2021-10-03")
    group by t1.tag,t1.day
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21

    在这里插入图片描述

    🐴 SQL6 近一个月发布的视频中热度最高的top3视频

    🚀 建表语句

    DROP TABLE IF EXISTS tb_user_video_log, tb_video_info;
    CREATE TABLE tb_user_video_log (
        id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
        uid INT NOT NULL COMMENT '用户ID',
        video_id INT NOT NULL COMMENT '视频ID',
        start_time datetime COMMENT '开始观看时间',
        end_time datetime COMMENT '结束观看时间',
        if_follow TINYINT COMMENT '是否关注',
        if_like TINYINT COMMENT '是否点赞',
        if_retweet TINYINT COMMENT '是否转发',
        comment_id INT COMMENT '评论ID'
    ) CHARACTER SET utf8 COLLATE utf8_bin;
    
    CREATE TABLE tb_video_info (
        id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
        video_id INT UNIQUE NOT NULL COMMENT '视频ID',
        author INT NOT NULL COMMENT '创作者ID',
        tag VARCHAR(16) NOT NULL COMMENT '类别标签',
        duration INT NOT NULL COMMENT '视频时长(秒数)',
        release_time datetime NOT NULL COMMENT '发布时间'
    )CHARACTER SET utf8 COLLATE utf8_bin;
    
    INSERT INTO tb_user_video_log(uid, video_id, start_time, end_time, if_follow, if_like, if_retweet, comment_id) VALUES
       (101, 2001, '2021-09-24 10:00:00', '2021-09-24 10:00:30', 1, 1, 1, null)
      ,(101, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:31', 1, 1, 0, null)
      ,(102, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:35', 0, 0, 1, null)
      ,(103, 2001, '2021-10-03 11:00:50', '2021-10-03 11:01:35', 1, 1, 0, 1732526)
      ,(106, 2002, '2021-10-02 10:59:05', '2021-10-02 11:00:04', 2, 0, 1, null)
      ,(107, 2002, '2021-10-02 10:59:05', '2021-10-02 11:00:06', 1, 0, 0, null)
      ,(108, 2002, '2021-10-02 10:59:05', '2021-10-02 11:00:05', 1, 1, 1, null)
      ,(109, 2002, '2021-10-03 10:59:05', '2021-10-03 11:00:01', 0, 1, 0, null)
      ,(105, 2002, '2021-09-25 11:00:00', '2021-09-25 11:00:30', 1, 0, 1, null)
      ,(101, 2003, '2021-09-26 11:00:00', '2021-09-26 11:00:30', 1, 0, 0, null)
      ,(101, 2003, '2021-09-30 11:00:00', '2021-09-30 11:00:30', 1, 1, 0, null);
    
    INSERT INTO tb_video_info(video_id, author, tag, duration, release_time) VALUES
       (2001, 901, '旅游', 30, '2021-09-05 7:00:00')
      ,(2002, 901, '旅游', 60, '2021-09-05 7:00:00')
      ,(2003, 902, '影视', 90, '2021-09-05 7:00:00')
      ,(2004, 902, '影视', 90, '2021-09-05 8:00:00');
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40

    📖 需求

    问题:找出近一个月发布的视频中热度最高的top3视频。
    
    注:
    热度=(a*视频完播率+b*点赞数+c*评论数+d*转发数)*新鲜度;
    新鲜度=1/(最近无播放天数+1);
    当前配置的参数a,b,c,d分别为100532。
    最近播放日期以end_time-结束观看时间为准,假设为T,则最近一个月按[T-29, T]闭区间统计。
    结果中热度保留为整数,并按热度降序排序。
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

    🍌🍌 答案

    select t1.video_id
    ,round(
    ((sum(case when timestampdiff(second,start_time,end_time)>=duration 
          then 1 else 0 end ))/count(*)*100
    +sum(if_like)*5
    +count(comment_id)*3
    +sum(if_retweet)*2)
    *
    1/(DATEDIFF((select date(max(end_time)) from tb_user_video_log),
                date(max(end_time)))+1)
    ) as hot_index
    from tb_user_video_log t1,tb_video_info t2
    where t1.video_id=t2.video_id
    and DATEDIFF(DATE((SELECT MAX(end_time) FROM tb_user_video_log)),
                 DATE(release_time)) <= 29
    group by t1.video_id
    order by hot_index desc
    limiT 3
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19

    在这里插入图片描述

    在这里插入图片描述

  • 相关阅读:
    cesium 雷达扫描 (线行扩散效果)
    CSS 核心知识点 - grid
    来自jackson的灵魂一击:@ControllerAdvice就能保证万无一失吗?
    Himall商城Web帮助类 获得http请求数据
    aspnetcore微服务中使用发件箱模式实例
    Oracle/PLSQL: To_Clob Function
    Windows 根据github上的环境需求,安装一个虚拟环境,安装cuda和torch
    【C】字符串函数与字符函数
    计算机毕业设计(附源码)python在线阅读系统
    聊聊druid连接池的监控
  • 原文地址:https://blog.csdn.net/weixin_41645135/article/details/125383783