做过移动端ui自动化的小伙伴,就会发现很多控件的元素是一样的或者是找不到的,为了解决这个痛点,于是通过图片灰度处理返回坐标x,y找到控件的位置。再结合pytest+接口+UI断言整体项目思路。
1.接下来我们主要说一下基于opencv图片识别寻找控件坐标
2. 我们使用两个图,一个是移动端截图,一个是控件的图,
Java代码如下
public static void main(String[] args) {
run_opencv("D:/Search.png", "D:/Setting.png",50,50);
}
public static HashMap<String, Integer> run_opencv(String picturePath,String PagePicturePath,int xPercent,int yPercent) {
HashMap<String, Integer> location = new HashMap<>();
try {
//x,y = get_center_location('D:/Battery.png', 'D:/Setting.png',0,0)
String cmds = String.format("python D:\\Project\\Program\\PythonWorkspace\\myProject\\python_project\\apptest\\myopencv\\other_case\\get_location_by_opencv.py %s %s %d %d", picturePath,PagePicturePath,xPercent,yPercent);
System.out.println("Executing python script for picture location.");
Process pcs = Runtime.getRuntime().exec(cmds);
pcs.waitFor();
Thread.sleep(1000);
// 定义Python脚本的返回值
String result = null;
// 获取CMD的返回流
BufferedInputStream in = new BufferedInputStream(pcs.getInputStream());// 字符流转换字节流
BufferedReader br = new BufferedReader(new InputStreamReader(in));// 这里也可以输出文本日志
String lineStr = null;
while ((lineStr = br.readLine()) != null) {
result = lineStr;//Python 代码中print的数据就是返回值
//xLocation: 147
//yLocation: 212
if(lineStr.contains("xLocation")) {
int x = Integer.parseInt(lineStr.split(":")[1].trim());
location.put("x", x);
}
if(lineStr.contains("yLocation")) {
int x = Integer.parseInt(lineStr.split(":")[1].trim());
location.put("y", x);
}
}
// 关闭输入流
br.close();
in.close();
System.out.println(location.toString());
} catch (Exception e) {
e.printStackTrace();
}
return location;
}
Python代码:
# -*- encoding=utf-8 -*-
__author__ = 'Jeff.xie'
import cv2
import os
import sys
import time
#获取移动端图片
def screencap():
cmd = "adb root"
cmd1 = "adb shell /system/bin/screencap -p /sdcard/da.png"
cmd2 = "adb pull /sdcard/da.png "
os.system(cmd)
time.sleep(1)
os.system(cmd1)
time.sleep(2)
os.system(cmd2)
def _tran_canny(image):
"""消除噪声"""
image = cv2.GaussianBlur(image, (3, 3), 0)
return cv2.Canny(image, 50, 150)
def get_center_location(img_slider_path,image_background_path,x_percent,y_percent):
"""get_center_location"""
# print("img_slider_path: "+img_slider_path)
# print("image_background_path: "+image_background_path)
# print("x_percent: "+str(x_percent))
# print("y_percent: "+str(y_percent))
# java传递过来的参数都是str类型,所以需要强转成int类型
xper = int(x_percent)
yper = int(y_percent)
# # 参数0是灰度模式
image = cv2.imread(img_slider_path, 0)
template = cv2.imread(image_background_path, 0)
# 寻找最佳匹配
res = cv2.matchTemplate(_tran_canny(image), _tran_canny(template), cv2.TM_CCOEFF_NORMED)
# 最小值,最大值,并得到最小值, 最大值的索引
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
#获得背景图像高和宽
src_img = cv2.imread(image_background_path,cv2.IMREAD_GRAYSCALE)
h,w = src_img.shape
# print("src_img_h:",h)
# print("src_img_w:",w)
#获得需要寻找图像高和宽
des_img = cv2.imread(img_slider_path,cv2.IMREAD_GRAYSCALE)
des_img_h,des_img_w = des_img.shape
# print("des_img_h:",des_img_h)
# print("des_img_w:",des_img_w)
trows,tcols = image.shape[:2] #获得图片的宽度,两种方式都可以
# print(trows)
# print(tcols)
top_left = max_loc[0] # 横坐标
# 展示圈出来的区域
x, y = max_loc
# max_loc这个是最大值,所以获取的是x,y位置坐标,小图片右下角的位置,左上角的要用min_loc
# print("x:",x)
# print("y:",y)
xLocation = x + int(des_img_w*xper/100)
yLocation = y + int(des_img_h*yper/100)
print("xLocation: "+str(xLocation))
print("yLocation: "+str(yLocation))
# print(max_loc)
# print(min_loc)
# print(min_val)
# print(max_val)
return xLocation,yLocation
# w, h = image.shape[::-1] # 宽高
# cv2.rectangle(template, (x, y), (x + w, y + h), (7, 249, 151), 2)
# return top_left
if __name__ == '__main__':
# x,y = get_center_location('D:/Battery.png', 'D:/Setting.png',40,39)
img_slider_path = sys.argv[1]
image_background_path = sys.argv[2]
x_percent = sys.argv[3]
y_percent = sys.argv[4]
get_center_location(img_slider_path, image_background_path,x_percent,y_percent)
# 0%
# getx: 29
# gety: 1390
# 50%
# getx: 49
# gety: 1415
# 100%
# getx: 69
# gety: 1441